TRANSMITTED BY EMAIL

$$
\text { Date: } \quad 30 \text { May } 2022
$$

TO:	Nicholas Smith Attorneys	
ATT:	Mr Smith	nicks@nsmithlaw.co.za
FROM:	Hercules Weasels	hercules@greencounsel.co.za
Total pages:	3	Our ref: $0023-002$

The information contained in this document is confidential and intended for the exclusive attention of the addressee. Unauthorised disclosure or distribution of the information is prohibited. Please advise us immediately should you have received this document in error.

Dear Sir

OBSERVATORY CIVIC ASSOCIATION AND ANOTHER V LLPT AND OTHERS - SUPPLEMENTARY FOUNDING AFFIDAVIT

1. I refer to your comments concerning the filing of the applicants' supplementary founding papers in your email correspondence with Mr. Owen on 26 May 2022, as well as your unilateral demands to the same effect in your correspondence of 17 May 2022.
2. Please be advised that the applicants will not be in a position to file their supplementary founding affidavit tomorrow. We are not in agreement with your position that this is the filing deadline imposed by the uniform rules given that the fourth and fifth respondents' complete record was only filed on 26 May 2022. By our calculation, our clients' supplementary founding affidavit and amended notice of motion are due in terms of the rules on 9 June 2022. We will file the supplementary affidavit as soon as possible after that date as we are able.
3. In any event, having regard to our duties to our clients (and the Court) and in view of the fact that the rule 53 records now run to some 30000 pages between them, we could not reasonably or responsibly submit to your demand that the supplementary founding affidavit be filed by tomorrow, 31 May 2022.
4. Nonetheless, you have our assurance that the applicants' attorneys and counsel are doing their utmost to ensure that our supplementary papers are filed as soon as possible, mindful of the need to proceed expeditiously with the review.
5. You will be aware that the $4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ respondents (i.e. the Province and the City) were required to file their respective records of decision in terms of Rule $53(1)(b)$, within 15 days after receiving the applicants' notice of motion.
5.1. The City and Province was served with the notice of motion on 3 August 2021. It follows therefore, that the records of the Province and City were due on 25 August 2021.
5.2. The City only served a copy of its record on our offices, electronically on 29 April 2022 after 17 h 00 , and thereafter only provided us with a filing notice of the record on 12 May 2022. This record was therefore filed 8 months late.
5.3. The Province served a copy of its record on our offices, electronically on 17 May 2022, filed its supplementary record, electronically on 26 May 2022, and have yet to provide a stamped filing notice, indicating that its record and supplementary record has been filed at court. This record was therefore filed 9 months late.
6. In contrast to the current unreasonable demands being made of the applicants, you have not raised any objection to these delays. Moreover, apart from their length, the time taken to assemble the records is indicative of the scale of the task of preparing a supplementary founding affidavit in response.
7. As regards your contention, based on my use of the word "peruse", that the applicants' counsel had made a thorough examination of the fourth and fifth respondents' 14000 page record by 18 May (i.e. in a single day), I should clarify that what had occurred was in fact a cursory exercise of traversing the record to determine its contents. It was neither humanly possible, nor a responsible performance of the duty owed to clients, to read and analyse this record for purposes of preparing a supplementary founding affidavit in a single day.
8. We trust that the above clarifies the applicants' position. We will apply for condonation of any failure to adhere to the rules in due course, should this become necessary.

Yours sincerely

CULLINAN \& ASSOCIATES INC.
per: Hercules Wessels

COPIES TO:

Heritage Western Cape

Ms Penelope Meyer

Basson Petersen Attorneys Inc.

Mr Petersen
Legal Resources Centre
Ms Mgedezi
Webber Wentzel
Ms De Freitas
The State Attorney
Mr Owen
penelope.meyer@westerncape.gov.za

Bpinc.law@gmail.com
lelethu@Irc.org.za
sabrina.defreitas@webberwentzel.com
mowen@iustice.gov.za

NICHOLAS SMITH ATTORNEYS
ENVIRONMENTAL LAW SPECIALISTS

Cullinan and Associates Inc.
Attention: Mr. Hercules Weasels
Our ref: NDS/sg/L38-001
By email: hercules@greencounsel.co.za

Dear Sirs

RE: OBSERVATORY CIVIC ASSOCIATION AND ANOTHER v LIESBEEK LEISURE PROPERTIES TRUST AND OTHERS (CASE NUMBER: 12994/2021 IN THE WESTERN CAPE DIVISION OF THE HIGH COURT)

1. We acknowledge receipt of your letter of 30 May 2022.
2. We again remind you that the applicants' senior counsel made an unequivocal undertaking during argument before Goliath DJP in Part A of the present application in January this year. Senior counsel's undertaking was to the effect that the applicants, their attorneys of record, and their counsel would ensure that there are no delays in their conduct of the pending review application. In open court he tendered utmost expedition in the applicants' pursuit of the review. For you now to suggest that the delivery by the state attorney of the Province's 7-page supplementary record on 26 May 2022 re-sets ab initio the 10-day period afforded your clients for delivery of their supplementary founding papers is untenable in the circumstances.
3. Furthermore, any delay by the City and the Province in providing their rule 53 records is irrelevant to your clients meeting their obligation in terms of rule 53(4) of the Uniform Rules of Court if they see fit to deliver supplementary founding papers in Part B. You did not exercise your clients' right in terms of the Uniform Rules to compel the delivery of the aforesaid records if you were so inclined.
4. In any event, it is indisputable that the full rule 53 records are in your possession. All but 7 pages of the records have been in your possession for a significant period of time already. You acknowledge in terms that you have had the City's complete record since the end of April this year, and the Province's record since the middle of May (but for the supplementary (7 -page) record filed on 26 May this year).
5. You and your clients have been involved in the decision-making processes that are the subject of your clients' pending review for a significant period of time. Your clients' representatives have been involved since the inception of the public participation processes that culminated in the decisions they now seek to review. Your firm's involvement in this matter goes back to at least late 2020. Much of what is in the rule 53 records thus constitutes information already well-known to you and to your clients. Some of the information included in the records was generated by your clients' representatives.
6. We dispute your assertion that the end of 9 June 2022 marks the expiry of the 10 -day period. We maintain that it expired on 31 May 2022. Our instructions are nonetheless to afford you an indulgence to deliver your clients' supplementary founding papers in the review by the end of next Thursday, 9 June 2022.
7. In the event that your clients' supplementary founding papers are not filed by the date indicated directly above, we will assume that you do not intend filing supplementary founding papers. The respondents in the review will then deliver their respective answering affidavits within 30 court days of 9 June 2022, and as provided for in the Uniform Rules. As soon as possible after 9 June 2022 we will also request the respective counsel in the matter to arrange a meeting with the Judge President in order to obtain directions regarding the further conduct of the review up to and including the hearing thereof.
8. For present purposes, we will not debate your self-serving attempts to avoid or dilute statements you've made in your previous correspondence, or your attempts now to prevaricate on certain aspects. We do point out however that your reference previously, in paragraph 2 of your letter of 18 May 2022, to your perusal of the contents of the Province's record does not refer to your counsel doing so, as your letter under reply now asserts. Your previous statement was clearly and unequivocally a reference to the review of the Province's record by you (and presumably your colleagues) as the applicants' attorneys of record.
9. We await your clients' supplementary founding papers by or before the end of 9 June 2022.

Yours faithfully,
NICHOLAS SMITH ATTORNEYS
Per:

NICHOLAS SMITH

Copies to:

Heritage Western Cape
Attention: Ms. Penelope Meyer
By email: penelope.meyer@westerncape.gov.za
Webber Wentzel Attorneys
Attention: Ms. Sabrina De Freitas
By email: sabrina.defreitas@webberwentzel.com

The State Attorney
Attention: Mr. Mark Owen
By email: mowen@justice.gov.za
Basson Petersen Attorneys Inc.
Attention: Mr. Petersen
By email: Bpinc.law@gmail.com
Legal Resources Centre on behalf of the Forest Peoples Programme (amicus curiae)
Attention: Ms. Lelethu Mgedezi
By email: lelethu@lrc.org.za

PRE-APPLICATION CONSULTATION MEETING IN TERMS OF SECTION 70 OF THE CITY OF CAPE TOWN MUNICIPAL PLANNING BY-LAW

VENUE: Table Bay District Muncipality, Media City Building, Cape Town
DATE: Wednesday 11 October 2017
PROJECT: The River Club (Eff 151832 Cape Town)

ATTENDANCE:

Project team

| Name | Abb | Organisation | Tel. / Cell. No. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Feoff Underwood | GU | Planning Partners | | E-Mail |
| Tim Florence | MF | Planning Partners | | |
| Imraan Ho Yea | LH | Vivid Architects | | |
| Marise Potgieter | MP | Urban Concepts | | |
| Carshif Talip | CT | Aurecon | | |
| Jannie Conradie | SC | Aurecon | | |
| Jacques Taljaard | ST | Aurecon | | |
| Matthew Law | ML | SRK Consulting | | |
| Charles Selkirk | CS | Selkirk and Selkirk | | |

City of Cape Town

Name	Abb	Department	Tel.	
Juliet Leslie	IL	Land Use Management		E-Mail
Pete van Heerden	PvH	Spatial Planning		
Mark Bell	MB	EHM: Heritage		
Dimitri Georgeades	DG	District Head: EHM		
PC Wasserman	PW	Urban Design		
Benito Coghill	BC	Building Development Management		
Ronelle Clarke	RC	EHM: Environmental		
Anthony Damonze	AD	Cl		
Melvin Engelbrecht	ME	Water \& Sanitation		

* Note: COCT officials from Transport for Cape Town, Traffic Impact Assessment \& Development Control, Stormwater Management and Electricity Services were invited to the meeting but were not able to attend.

MINUTES:

1. INTRODUCTION

1.1 GU noted that meeting is convened in terms of section 70 of the City of Cape Town MPBL. Minutes to be taken and circulated to ensure a correct record.
1.2 Components of the project were presented in the form of a PowerPoint presentation. A copy of the presentation can be made available to COCT officials on request.

2. PROJECT TEAM PRESENTATIONS

2.1 Town planning

2.1.1 GU presented the town planning context, including inter alia:

- Site context;
- Applicable planning policy;
- Zoning (OS3).
2.1.2 GU noted that despite the fact that the River Club is located within TRUP, the River Club planning application will be submitted whether or not any TRUP Local Spatial Development Framework has been completed by COCT . The reason for this is primarily because the River Club proponent cannot afford to delay the planning application until mid-2018, which is when the TRUP Local Spatial Development Framework is expected to be promulgated.
2.1.3 GU introduced the project. Important features of the project include:
- Mixed use (office, retail, residential, community);
- Bulk of $\pm 150000 \mathrm{~m}^{2}$;
- Building heights range from 1-12 storeys;
- Raise ground level by $\pm 3 \mathrm{~m}$ (to approx. 7 m m.s.l);
- Implementation of a portion of Berkley Road extension;
- Rehabilitation of the canal into a congruent riverine corridor;
- Vegetated stormwater swale along old Liesbeek River;
- Publicly accessible spaces (green and hard);
- Recreation and leisure facilities; and
- Pedestrian friendly NMT features.
2.1.4 GU provided some factors for project motivation, including inter alia:
- Raising the ground level above 100 -year flood elevation will have limited flood impact on neighbouring properties;
- The terrestrial site has been transformed and has limited ecological value;
- Opportunity to create a congruent and legible riverine corridor along lower Liesbeek River;
- Improved public access to the rivers, wetland and open areas;
- Financial viability ($150000 \mathrm{~m}^{2}$ of floor space is required to make the project viable);
- The project represents significant private sector investment ($\pm \mathrm{R} 4$ billion);
- Substantial job creation;
- Increased municipal income in rates and taxes (\pm R40 million per annum);
- There is substantial market demand for office, retail and residential uses;
- The site is at the western gateway into TRUP;
- The River Club can become a destination place within Cape Town.
2.1.5 An initial town planning application will be submitted for:

- Deviation from Table Bay District SDP, which currently categorises the site as "open space", core 2" and "buffer 1 " land.
- Rezoning from Open Space 3: Special Open Space to Subdivisional Area.
- Raising the level of the ground (in terms of in terms of section 42(i) of the MPBL and item 126 of the DMS).
2.1.6 Subsequent town planning applications will be submitted for inter alia:
- Bulk services agreement;
- Precinct plans;
- Block subdivision;
- Deemed zoning;
- Internal subdivision;
- Site Development Plans

2.2 Urban design indicators and recommendations

2.2.1 MP presented the urban design indicators, including inter alia:

- Natural environment;
- Viewlines:
- Height;
- Connectivity.
2.2.2 MP presented the urban design recommendations, including inter alia:
- Provision of an 'eco-corridor' through the site;
- Retaining viewlines towards Devils Peak;
- Height.

2.3 Development proposal

2.3.1 H presented the more detail about the development proposal, including inter alia:

- The proposal to rehabilitate the existing canal into a visually congruent and publicly accessible riverine corridor (with resulting ecological and social benefits) along the lower reaches of the Liesbeek River;
- The proposal to infill the majority of the existing old Lisebeek River channel, leaving only a narrow vegetated stormwater swale along its current course;
- Development setbacks of $25-60 \mathrm{~m}$ along the rehabilitated riverine corridor (setback to the building line, perimeter roads to occur within these setbacks);
- Development setbacks of $10-15 \mathrm{~m}$ along the vegetated stormwater swale (setback to the building line, perimeter roads to occur within these setbacks);
- The construction of a portion of Berkley Road extension, including a bridge over the Black River, as part of the development proposal;
- The construction of a bridge over the old Liesbeek River linking the development with Liesbeek Parkway;
- Mix of uses (retail, office, residential, community);
- Inclusion of inclusionary housing in the residential component;
- Floor areas;
- Raising of the roads, entrances to basements and ground floor levels of buildings above the $1: 100$-year floodline;
- Open space;
- Parking;
- Massing models;
- Viewlines;

- Acknowledgement of the forthcoming SKA development on the adjacent site, Portion 1 of Eff 26423 Cape Town.

2.4 Surface water hydrology

2.4.1 CT presented the findings of the surface water hydrology study conducted by Aurecon, including inter alia information relating to the following:

- Acknowledgement of previous surface water hydrology studies in the area;
- Methodology (including the consideration of climate change factors);
- Reasons for flooding;
- Illustration of pre-development and post-development flood levels over the surrounding area (there is minimal difference);
- Conclusion that raising the ground level above the $1: 100$-year flood elevation will have a very limited flood impact on neighbouring properties.

2.5 Civil engineering services

2.5.1 CT noted that COCT has provided confirmation of water and sewage capacity for $120000 \mathrm{~m}^{2}$ of development. Aurecon will be applying to CoCT for confirmation of capacity for $150000 \mathrm{~m}^{2}$.
2.5.2 CS noted 12-MVA of electricity will be required to service the development. However, based on correspondence received from the CoCT Electricity Department, there is currently only $\pm 9-\mathrm{MVA}$ available to service the entire extent of TRUP. Thus, it is suggested that the CoCT Electricity Department urgently commence with planning proposals to augment the current capacity. The River Club project team is engaging with CoCT regarding availability of supply.

2.6 Traffic and transport

2.6.1 JC presented the findings of the Transport Impact Assessment conducted by Aurecon, including inter alia information relating to the following:

- The current road network;
- The proposed implementation of Berkeley Road extension;
- Proposed access onto the site;
- Indicative trip generation and how this will impact on the surrounding road network;
- Indicative parking ratios; and
- Public transport proposals.

3. DISCUSSION

3.1 Town planning

3.1.1 PVH confirmed that the River Club is not obliged to wait for the TRUP Local Spatial Development Framework to be promulgated before submitting the planning application. The application can proceed based on current spatial planning policy.
3.1.2 JL asked if the riverine corridor areas will be publicly accessible. GU responded that the entire site will be publicly accessible (only the buildings themselves will be secured), and in particular the public will be encouraged to use the open space areas, inclusive of the riverine corridors.
3.1.3 JL noted that the CoCT Draft Spatial Development Framework (2017) gives limited guidance for development in riverine corridors.
3.1.4 JL asked if Berkeley Road extension would form part of Phase 1 of the development: GU confirmed that a portion of the road will be constructed (i.e. the bridge over the Black River and access to the development will

be constructed by the River Club as a Development Contribution offset; the construction of the remainder of the road connecting into Liesbeek Parkway / Malta Road will need to be negotiated with CoCT.
3.1.5 PVH asked if the layout can change to take access off Station Road if the SKA development (proposed for Portion 1 of Eff 26423 Cape Town) does not go ahead as planned. GU said that this would be unlikely, as the spacing to the Liesbeek Parkway / Station Road intersection is too small to accommodate the necessary vehicle stacking into Station Road.
3.1.6 PVH asked if the Berkeley Road extension would be constructed at grade. CT responded that in terms of the CoCT's Floodplain and River Corridor Management Policy (2009) the road needs to be constructed above the 1:100-year floodline, and will therefore be constructed on fill material.

3.2 Environmental

3.2.1 RC asked if sustainable green infrastructure / design is being considered. IH responded that the client has a good track record in relation to green building technology.
3.2.2 RC asked if there are any open space areas on the site that will be reserved exclusively as ecological areas. GU responded that the riverine corridors carry an ecological function whereby appropriate vegetation will be planted in accordance with ecological requirements, and that the public will be encouraged to stick to the paths located alongside the riverine corridors. With regards to the park / eco-corridor running through the site, ML advised that there is no dedicated Western Leopard Toad corridor, as per the recommendations of the herpetologist on the project team. However, the detailed design stage of the landscaped areas will incorporate landscaping for active public use and landscaping to support ecological functions.
3.2.3 RC asked how will flooding of basements be dealt with. CT responded that the entrance to the basements will be above the 1:100-year floodine. The basements below the new ground level will be waterproofed and/or pumped.

3.3 Hydrology

33.1 MB asked if the surface water hydrology study had considered the effect of spring tides on flood levels. CT confirmed that the 50 -year sea level rise projection has been taken into account in the modelling (including spring tides), as per the CoLT's requirements.

3.4 Heritage

3.4.1 MB noted that Bridget O' Donoghue was involved in the initial stages of the heritage study, but has since been replaced. GU explained the reasons why Bridget O' Donoghue is no longer the heritage specialist on the project.
3.4.2 MB pointed out that development within TRUP is part of an ongoing Heritage Western Cape process. GU said he is aware of the HWC process and any outcome will have to be factored into the River Club application. However, the River Club application will proceed.
3.4.3 MB said that Melanie Attwell's HIA in relation to the TRUP development initiative has got a strong pre-colonial focus to it and asked if pre-colonial history has been considered as part of the River Club HIA. GU responded that pre-colonial history has been considered and will be presented accordingly in the HIA.
3.4.4 MB noted that the preferred development alternative erases the historic Liesbeek River channel, and that this element of the proposal needs to be well motivated in the HIA. GU acknowledged this point.

Skip to content

info@wcpdf.org.za

 0767210135

WESTERN CAPE GOVERNMENT ECONOMIC WAR ROOM

Western Cape Government Economic War Room

At its annual conference held in May 2018, the WCPDF initially proposed the idea of an economic war room at government level to deal with the South African economic crisis in general and, in particular, to begin to alleviate the constraints and red tape that were stifling growth and job creation in the property development and construction industries. This was a theme expanded upon extensively in the WCPDF's annual conference held in 2019 under the theme The Perfect Storm: Investment and jobs or bureaucracy and stagnation.
In November 2018, a meeting between the WCPDF chair, Deon van Zyl, and the then Western Cape Government (WCG) Minister of Economic Opportunities, Alan Winde, planted the seeds firmly in the ground, with the Minister committing to the setting up of such a war room. With the Minister becoming the WCG Premier in 2019, work on the war room escalated culminating in a launch in September 2019, during the Premier's first 100 days in

office, and incorporating five economic areas deemed to be those most crucial to kickstarting the provincial economy and creating much -needed jobs.

The property and construction sector in the Western Cape was incorporated under the category of "Fixed Capital and Property Development" and was highlighted as a primary enabler that would allow the WCG to achieve its growth vision for the province. At the launch of this sector's incorporation (see report here), the Premier also acknowledged that the crisis currently faced by this sector needed to be urgently addressed. Other sectors incorporated into the war room include commuter mobility, informal light manufacturing, IT and business process outsourcing, and the creation of manufacturing jobs in Atlantis.
In terms of the property development and construction sectors, a pilot programme launched in September saw a WCG-appointed task team interview various private sector members and organisations to identify the key issues to be tackled. A report outlining progress made up to November 2019, submitted to the WCPDF by Premier Alan Wince, can be found here.
But then, Covid -19 hit, substantially stalling the work of the War Room. However, gradually during the course of 2020, the various workgroups convened once again. As a result and at long last, The Western Cape Government released its initial report in March 2021, with "Fixed Capital and Property Development" making up a substantial portion of the report. The full report on all five industry sectors that form part of the War Room can be accessed here, with details on our category to be found across pages 139 to 157.
War Room team leader for our sector, Gerhard Gerber (Chief Director of Development Planning in the Western Cape Government), has also presented the WCPDF with a copy of a PowerPoint summary delivered on 9 March 2021. This includes an opener on the War Room presented by Minister Anton Bredell (Local Government, Environmental Affairs and Development Planning), and Gerber's presentation entitled "Phase 2 - What we did during the Covid-19 Lockdown." The PowerPoint is available here.
The methodology being followed by the War Room allows for work groups, consisting of various officials in different spheres and departments in government, to interview industry role players. Feedback received leads to a "problem-driven iterative adaptation" assessment during which symptomatic problems are analysed to identify root causes of problems.

Reading the findings of the various workgroups, it becomes clear that officials suffer under an audit culture management environment instead of a growth vision driven culture. This mirrors the frustration experienced by the private sector. We now look at the political leadership and ask: "Quo vadis?"
We also now wait with bated breath to see what impact the first report results will have on setting a clear growth vision for the Western Cape and each municipality in the province. As always, please subscribe to the WCPDF's monthly newsletters to be kept up to date on progress on the War Room.

From:	Mathew Law MLaw@srk.co.za
Sent:	Friday, February 28, 2020 3:02 PM
To:	Zaahir Toefy; Mxolisi Dlamuk; Gerhard Gerber, Michelle Couzyn-Rademeyer
Cc:	Taryn Dreyer; Keagan-leigh Adrieanse; Waseefa Dhansay, 'geoff@planpart.co.za';
	Eldon van Boom; Karin Dugmorestrom; Marshallene Harris
Subject	RE: River Club BAR; Request for Meeting with HWC
Attachments:	River Club HIA HWC IACom Issues and Responses_200227. Following final
	comment_Master.docx

Dear All

Please find attached the LLPTs responses to the issues raised by HWC on the HIA for the River Club in their final comments (together with the responses already provided to the interim comments nade by HWC, noting the issues which have been repeated).

The responses are informed by inputs from the specialists on the project team.
These will be referenced to at the workshop scheduled for Wednesday, 4 March 2020.
Kind regards,

Matthew

From: Zaahir Toefy Zaahir.Toeky@westerncape.gov.za
sent; Wednesday, 26 February 2020 13:25
To: Mxolisi Dlamuka Mxolisi.Dlamuka@westerncape.gov.za; Gerhard Gerber
Gerhard.Gerber@westerncape.gov.za; Mathew LawMLaw@srk.co.za; Michelle Couzyn-Rademeyer
michelle@zenprop.co.za
Cc: Taryn Dreyer Taryn.Dreyer@westerncape.gov.za; Keagan-leigh Adriaanse <Keagan-
Leigh.Adriaanse@westerncape.gov.za>; Waseefa Dhansay Waseefa.Dhansay@westerncape.gov.za;
'geoff@planpart.co.za' Geoff@planpart.co.za; Eidon van Boom Eldon.vanBoom@westerncape.gov.za; Karih
Jugmorestrom Karin.Dugmorestrom@westerncape.gov.za; Marshallene Harris
Marshallene.Harris@westerncape.gov.za
Subject: RE: River Club BAR: Request for Meeting with HWC
Dear Mr Dlamuka, Thank you very much for your response below. The original requast for a meeting was directed to our office and we ware in the process of coordinating such. From your response below it appears that your office is now making the necessary arrangements. I certainly have no problem with that, we await further communication in this regard as expressed in your email below.

Kind Regards
Zaahir

From: Mxolisi Dlarnuka
Sent: Wednesday, February 26, 2020 1:08 PM
To: Gerhard Gerber <Gerhard.Gerbergwesterncase Eov.za>; Matthew Law <MLawe srk co.za>; Zaahir Toefy
<ZaahirToely uwestemcape qovzza; Michelle Couzyn-Rademeyer <michellewzentrof.coza>
Cc: Taryn Dreyer <Tatun.Drevergwestemcape.gov.za>; Keagan-leigh Adriaanse <Keagan-
Leigh.Adnansece westerncave.gov.za>; Waseefa Dhansay <Waseefa.Dhansayewesterncarge, Fov.za>; 'geoff@planpart.co.za' <Geoffaplanpart.co.za>; Eldon van Boom <Eldon.vanBoomewesterncape kov.za>; Karin

Appendix G3: Surface Water Hydrology Impact Assessment

Document control record

Document prepared by:
 Aurecon South Africa (Ply) Lid
 Reg No 1977/003711/07
 1 Century City Drive
 Century City
 PO Box 4848

capolown@paurecongroup.com
W surecongroup.com
 cony version.
Using the documents or data for any purpose not agreed to th willing by Aurecon.

aurecon

12 March 2018
Revision: 3
Roforance: 112405

$$
\begin{aligned}
& \text { Proposed River Club Redevelopment } \\
& \text { Investigation into the impact of the } \\
& \text { proposed redevelopment of the River Club } \\
& \text { on flooding and flood abatement in the Salt } \\
& \text { River Catchment } \\
& \text { Liesbeek Leisure Properties Trust }
\end{aligned}
$$

aurecon
bringutam
Aurecon South Africa (Pty) Ltd was appointed to undertake a definitive, detailed study of the impact of the proposed River club development on the potential flooding. This study is intended to be used to gulde the decision-making process with respect to the approval, and if successful, the design of the determine the following:
The effect that developing the River Club site would have on the extent of flooding along the Salt and
Liesbeek Rivers; The implications that any changes to the surface water hydrology might have on flood levels which
would affect infrastructure and private property in the vicinity of the Sall and Liesbeek Rivers; The cumulative impacts of the River Club development and all other likely / planned developments in
the surrounding area; and
The potential ecological impacts of developing the River Club site - particularly on the Raapenberg
wettands.
The Clty of Cape Town (City) agreed that reference to other accepted studies would be necessary as
these address some of the above-mentioned objectives.
A review of the relevant titerature details the following: the history of the site which once formed part of an extensive wetland; the changes to the City's policles; the effects of urban development, climala
change and sea level rise; seven recent studles relating to flooding in the Liesbeek / Salt River Catchments; and which currently conceptualised developments are likely to take place in the vieinity of
the River Club site. The literature review found that: the River Club site. The literature review found that:
The River Club site is prone to flooding by events with a frequency of recurrence of about once in
every 2 to 5 years.
There are a significant number of recent studies that incorporate the River Club site - some of these
studies provide contradlctory results.
There is significant interest in the future development of the River Club site:

- There are a wide range of stakeholders.
- There are a variety of contradictory 'visions' of what should, and should not be done.
There have been changes to the Cily's policies relating to developing within the floodplain.
There is concern that infilling of the River Clut site will result in significant increases in flood levels.
Some stakeholders have openly rejected any study that indicates a negligible or insignificant
impact on flood levels.
There was a need for a detailed analysis of the potential for flooding in the vicinity of the River Club
site.

This study was commissioned by Llesbeek Lelsure Properdes Trust (LLPT) to investigate the impact that their proposed development might have on flooding in the vicinity, downstream and upstream of
their property. The City of Cape Town and other affected parties made a number of requests for the

information at the time. The findings of this report should only be used to assess the impact of the River
Club Proposal, and cannot / should not be used when considering atternative proposals (e.g. TRUP.
NRF, PRASA etc.).
Club Propossal, and cannot / should not be used when considering alternative proposals (e.g. TRUP.
NRF, PRASA elc.).

Disclaimet

fo

a The site is unfikely to be developed by the City as an attenuation facility a PRASA should not be allowed to close the existing overland flood route that extends across its propery, as
development proceeds.
The extension to Berkiey Road should be designed in such a manner as to not impact on the water levels determined by this study and any changes to the preliminary design would ineed the portion of the road that is within the floodplain.
There is a need to address the localised change in risk along Llesbeek Parkway. This could be done through raising the road locally (as discussed in the raport) to eliminate the potentlal fooding by
1 in 100 -year event, however ponding due to local stormwater is also likely to occur at this location 1 in 100-year event, however ponding due to
for which the provision of waming signs vould probably suffice.
The impact of the proposed development on flood levels and the areal extent of the additional flooding are considered to be negligible.
The combined impacts on flood levels of the proposed development together with the proposed
development of the Two Rivers Urban Park and their extent are considered to be negligible.
Widening the Salt River would reduce the flood levels for all scenarios, but as the capltal cost would
The main conclusion of thls study is that the proposed development would have an insignificant offect on flooding in the vicinity of the existing River Club site. Although the development would have some limited localised effects on flows and water levels in the Llesbeek and Black Rivers, impacts in terms of increased hazard and pored to be negligible - provided that the above-mentioned findings are adhered to. Athough the proposed development would not have a significant impact on flooding, it would none the
 Policy (CSRM, 2008a):
(Section 9.2: Flood Ma
Permission to develop $/$ obstruct the free flow of water within the 20 -year flood line area would need
to be granted.
Section 10.5: Table 1: Framework for the assessment of Proposals
The current assessment framework forbids development (including filling) within the 50 -year flood
plain. It notes: "fn exceptional circumstances minor "smoothing" of the $50 / 100$-year food Ine may
be considered, provided equivalent compensatory stage storage volume is provided within the
As the proposed development fatls under the 50 -year flood line, a deviation from the policy,

It is recommended that the City should take account of the findings of this study to determine whether in terms of the policy and based on consideration of the "geomorphological, mainfenance, social and should be approved.

Method of Investigation
To assess the potential impacts of the proposed development on flooding in the vicinity of the site, Aurecon developed a series of PCSWMM and HEC-RAS two-dimensional modets. These models we mesed used to determine the existing (status-quo) flooding and the extent of flooding if the propent. A
development were to be allowed - and thus any changes as a resull of the proposed development. range of development and mifigation scenarios were considered. These include: pre- and postdevelopment flood models; the effect of widening the Salt River Canal; the effect of wing the flooding; and the sensitivity of the modeis to different input parameters. As far as possible this analysis hes been Results and Conclusions

This study has reviewed seven relevant studies, and has undertaken extensive modelling with both HEC-RAS and PCSWMM 2D. The report presents (Chapter 4) the results for each scenario that was considered, without making definitive findings or conclusions due to the complexity of the site. Thereione, it is necessary to consider all the separate findings from the different scenarios iogation may lead to a
any definitive conclusions. Considering any 'question' or 'issue' raised in isolation misinterpretation of the results. Furthermore, hydrology and hydraulic modeling shouk be considered engineering judgement and experience is imporfant in interpreting the results. Therefore. Aurecon involved three of its staff who have extensive experience of the circumstances and and and appropriate manner.

Based on a review of all the available studies, the extensive modelling, and engineering judgement, it is
The results (magnitude of impact) appear to be relatively consistent for each study, even where study
methods and elevations may differ slightly.
The development of the River Club, along with the TRUP, PRASA and NRF sites is nkely to have an impact on flood levels, in the order of $0.01 \mathrm{~m}-0.15 \mathrm{~m}$ depending on the storm recurrence interval and
location. The greatest differences in flood levels occur in the to inge insignificant.
Were the River Club to be developed in isoiation (i.e. TRUP, NRF, PRASA were not to be developed), then the impacts on flood levels would be of a similar magnitude for all recurrence intervals,
by approximately $0.00 \mathrm{~m}-0.03 \mathrm{~m}$, than the levels for the scenario where all the proposed
we - The differences belween the post development scenarios are also well wilhin the uncertainties of

- It is important to note that if any of the proposed TRUP, NRF and PRASA developments were to

 and hydraulies in the vicinity of the River Club site. The design of changes to the Liesbeek Canal should aim to maintain the existing hydraulic functioning
of the welland during smaller recurrence interval ovents. The current proposal would have litte to no effect, but further delailed design refinements - during detaled design ene the It would be advisable, in consultation with the Fresh Water Consultant, to consider reversing ine
intervention undertaken by the TRUPA, Friends of the Liesbeck and the South African Astronomical
ind
Figure 1－1 Location，and size of the River Club site，within the TRUP area and greater Salt River 2

$$
\begin{aligned}
& \text { Location, and size of the River Club site, within the TRUP area and greater Salk river } \\
& \text { Catchment } \\
& \text { Aerial footage from } 1937 \text { indicating the 'original' course of the Black and Liesbeek Rivers }
\end{aligned}
$$

（Richard．F，2016）
Aerial footage indicating the changes between 1937－1958 to the course and structure of
Aerial footage indicating Rivers（Richard．F，2016） Aerial footage indicating the changes between 1958
the Liesbeek and Black Rivers（Richard．F，2016）
Map overlaying the changes between 1937 and the present to the course of the Llesbeek Map overlaying the
and Black Rivers．
Extent of infilling on

－constructed sometime between 2013－2015
－constructed sometime between Locations at which flood levels are compared in the table below
Timeline of recorded floods in the vicinity of the River Club
Partial obstructions in the Lower Liesbeek River between 2007－2012
Proposed TRUP Layout indicating developable area＇s
jesodod ueurdofenep vSved Guisix］
NRF owned land in the vicinity of the River Club
Existing NRF development proposal
Merging of LIDAR，River and Bridge DTM＇s
Importing of bridges from HEC－RAS into PCSWMM
Importing of bridges from HeC－RAS significant difference with Option 2
Layout option 1，showing the most sinh 1
Figure 2－1
Figure 2－2
Figure 2－3
Figure 2－4
Figure 2－7
Figure 2－8
Figure 2－9
Figure 2－11
Figure 2－13
高亳
高
高
으․
Figure 3－6 Layout option 2，showing the most slgnilitan dimers in each area
 Figure 3－8 Comparison of 2013）
Figure 3－9 Comparison of the 2D modeling results for a valley flooding scenario（Test 5，Point 3）
Comparison of the
（Brunner，2016）
Figure 3－10：Relationship between complexity and reliability（After James，2005）
Figure 3－10：Relationship between data，uncertainty and complexity（After James，2005）
Figure 3－11：Relay
Figure 3－12 Intervention that encourages flows into the wetlands
Figure 3－12 Intervention that encourages flows into the wetlands
Figure 3－13 The effect of widening the Salt River Canal and associated bridges based on Ninham
Stand 2004
Figure 3－14 Evidence of se
Figure 3－15 Flood Hazard Zones
Figure 4－1＇Monitoring points＇used for comparison between the different scenario＇s
Figure 4－2 Flooding as a result of overland flow $/$ minor system surcharging
Figure 4－3 Maximum extent of inundation for the 50 －year flood（whole model）
Figure 4－3 Maximum extent of inundation for the 50 －year flood（Whole mode
Figure 4 Maximum extent of inundation for the 50 －year flood（Vicinity of River Club）
ithehrods af myastogation

3．9 Closing the＇PRASA＇overland escape
3．10 Water Surface vs Energy Level
3．11 Hazard Analysis
3．12
Sensitivity Analysis
Accuracy of the models
4．1 Accuracy the proposed development on flooding in the surrounding urban area Impact of the proposed development on flooding in the sumoun railings
impact of the proposed River Club development on the SAAO building

4．3 Impact of the proposed development on flooding in the surrounding ecosystems 4．5 Opportunity cost of not using the River club for attenuation of runoff 40 part Assessment a Conchuions
Reformed

Appendix a
Apyensin： 6
aurecon

| Figure 4-5 | Maximum extent of inundation for the 100 -year flood (whole model) | 45 |
| :--- | :--- | :--- | :--- |
| Figure 4-6 | Maximum extent of inundation for the 100 -year flood (Vicinity of River Club) | 46 | Figure 4-6 Maximum extent of inundation or the $\begin{array}{ll}\text { Figure 4-7 } & \text { Locations at which flow was analysed } \\ \text { Figure 4-8 } & \text { Hydrographs at locations where notice }\end{array}$ Hydrographs at locations where noticeable changes in flow were detecled $(S Q=$ Slatus

quo; $P D=$ Post development wilh NRF, TRUP, PRASA, River Club)
 Figure 4-11 Impact on flooding of possible PRASA escape route during the 100 -year Storm even Figure 4-12 Impact of partially blocking the railway bridge immediately downstream of the River Club Figure 4-13 Comparison of the inundation considering the 100 -year flood event in combination with 54
 the 50 -year and 10 -year storm surge events
impact of widening the Salt River on the exten Fioure 4-15 Maximum extent of inundation for the 200 -year flood (whole model) Figure 4-16 SAAO buildings on the edge of the Liesbeek River canal. Dark blue-3-buidings 57 Figure 4-17 Impact on flooding during the 2-year recurrence interval slorm event for various 59 Figure 4-18 Water surface elevations during the 5 -year recurrence interval storm event for different 59 Figure 4-19 Overview of how flow enters and then leaves the Raapenberg welland $\begin{array}{llr} & & 8 \\ \text { Table 2-1 } & \text { Flood leveis determined / used in different studies } & 20 \\ \text { Table 3-1 } & \text { Typical Manning's Roughness used in modeling } & 24 \\ \text { Table 3-2 } & \text { Tldal levels used in modeling } & \\ \text { Table 4-1 } & \text { Overview of the scenarios that were modelled and the model funs undertaken as part of } & 39 \\ & \text { this study. } & \\ \text { Table 4-2 } & \text { Summary of differences (m) in Water Surface elevation at the different monitoring points } \\ & \text { (Figure 4-1) between the existing status quo and the posi development scenario } & 43 \\ & \text { (including TRUP, PRASA and NRF). } & 43 \\ \text { Table 4-3 } & \text { High level overview of changes in the } 1 \text { in 100-year flood characteristics as a result of the } \\ & \text { proposed developments } & 48 \\ \text { Tabie 5-1 } & \text { Significance of increased flood hazard } & 64\end{array}$ Figure 4-8 Hydrographs at locations where noticeable changes in flow were dete

Impact of the development of the hazard of flooding (in the vicinity
Figure 4-10
Figure 4-14 Figure 4-15
Figure 4-16

Figure 4-17
Figure 4-18

Figure 4-19
Figure $4-20$

The effect that developing the River Club site would have on the extent of flooding along the Salt and
Uiesbeek Rivers;
The implications that any changes to the surface water hydrology might have on flood levels which 룰
The cumulative impacts of the River Club development and all ather likeiy / planned developments in
the surrounding area; and
The potential ecological impacts of developing the River Club site - particularly on the Raapenberg
wettands and bird sanctuary.
As agreed with the city, reference to other accepted studies would be necessary to address some of
the above-mentloned objectives. surrounding properties. Thi Catchment (Flgure 1-1) - which drains by the Elsieskraal, Black and Liesbeek
of flows in the Salt River
Rivers that discharge into the Salt River.
Bacisgroumb Liesbeek Leisure Properies Trust (LLPT) currently owns and operates the River Club in The Liesbeek Leise Town (Figure 1-1). LLPT proposes to develop the site as a mixed commencial, nstitutional, residenllal stle and therefore as part of the scoping study ior the proposed a flood line andion study and to assess the impacts of the proposed development on the River Club site and surmounding properties. This study considered the flooding in the vicinity of the River Club site as a result

Concurrently, while LLPT's scoping studles were being undertaken, the Westem Cape Govemment Concurrenliy, while LLPT's scoping studes were being undertaken,
(WCG) were undertaking similar studies aimed at developing a spatial development framework for an
(The area known as the Two Rivers Urban Park (TRUP) - shown in Figure 1-1. The TRUP area is also includes some privately-owned erven, such as the River Club site. Following the release of the Draft Scoping Report for LLPT's proposed development a number of queries were raised with regard to AED's study tilled "Flood Line Determination for the Sall and Liesbee ther at the Cape Town Rner Cile In 2016 Aurecon South Africa (Pty) Ltd was appointed by LLPT to undertake a peer review of the AED study. This necessitated a review of the WCG study and or hesult of the review of these studies it was decided, in consultation with LLLPT, that it was necessary to undertake further investigations to confirm
 properties in the areas sufrounding this
development, in isolation, woutd have an insignificant impact on flood levels and that there were a studies. In 2017 Aurecon South Africa (Ply) L.td was appointed to underiake a definitive, detailed study of the
development. This report documents the process and findings of the review of the previous foodiod slinvestigations and further investigations carried out by Aurecon. The report also describes the addionalonent on flooding provides comment and conclusions about the potential impacis of the
and inumdation of the River Club site and surrounding properties.

[^0]
Figure 2.2 Aorial footage indicenting the changes between 1937 - 1959 to the course and structure of the Lesteek

Figure 24 $4 \begin{aligned} & \text { Map overiaying the changes between } 1937 \text { and the present to the course of the Lesbeek and elack } \\ & \text { Rivers. }\end{aligned}$
2.1. 2 Potential Ecological impacts The ecological value of lize lower reachas (Consulting Group). Dr Day highlighted that the Raapenberg Wellands (Figure 2-4) are of partioular importance and that the change in water depths, particularly for intra-year storm events, was of concern as il may impact on the local fauna and flora. The approach to
assessing the impact of the proposed development on the Raapenberg Wetlands is described in Section

It is important to recognise that over the last 20 years there have been significant shifts in polioy relating to the management of stormwater and flooding in the City. Prior to 2000 general practise was to limil development to above the 50 -year flood line (CMC, 2000). ARCUS GIBB (2000) noted that there was
no legislation which stipulated whether it was permissible to develop and fill within the 100,50 or 20 year flood plains; and that the City had no by-laws preventing fliling of the 50 year flood plain. documents:

- Development Control Guidelines in Flood Prone Areas'(CMC, 2000) in 2003
- 'Floodplain Management Guidelines' (CSRM, 2003)
2.1.2 Potental Ecological impacts
2.1.3 Policy changes documents:

anrrecor
which the largest impact on the SAAO would be realised. This is considered to be the case where neither
the River Club, nor the SAAO would have constructed berms (i.e. the status quo in 2012).

Figure 2-5 Berm on the South Aftican Astronomical Obervatory (SAAO) side of the Lesbeek CBnal - eonstructed

depending on design criteria) the excess flows will discharge overland via the road network which is
intentionally designed to serve as part of the surface drainage system (CSIR, 2005). White this may be intentionally designed to serve as part of the surface drainage system (CSIR, 2005). While this may be -in this case the Liesbeek and the Black/Salt Rivers.

Additionalty, for small storm events, should the stormwater infrastructure (Inlets and/or pipes) become
blocked it is expected that stormwater will be conveyed via the road network - which may appear to be
flooding but is often unrelated to the flow in the river.

2.1.8 Perceptions about flooding

In the public discourse - both in media articles and commenis submitted as part of the EIA process the site "will" have an impact on the flooding of properties in the surrounding area - with some interested the site "wilp" have an impact on the flooding of properties in the surrounding area - with some interested flooded relatively frequently (every few years) in recent history - as discussed in Section 2.3 - it is important to differentlate flooding as a result of high runoff, and flooding that results due to the capacity
of the drainage system being limfted due to inadequate mainlenance and or structural failure.

One specilic questlon that will not be answered by the modelling and analysis is "Why it is necessary

 sappodoud esau, padoן
 properties. It is therefore imporiant to note:

The reason that there are properties developed on land lower than the existing flood lines is that
historically (see Section 2.13) properties were allowed to be developed within the 100 -year flood plain. Therefore, properties such as thase ldentified as being below the 100 -year flood line woutd, if
developed today, be required to elevale themselves out of the floodplain - as is being required for

The purpose of this report is to assess the impact that the proposed development will have on
The purpose of this report is to assess the impact that the proposed development will have on
surrounding properties, in accordance with the provisions of the Cliy's 'Floodplain and River Corridor
Management Policy' (CSRM, 2009a).
2.2 Previous invesugations

The River Club and surrounding areas have been the focus of a number of hydrological and hydraulic studies over the last 20 years. These include the following studies: ARCUS GIBB (2000), Ninham Shand determined by these studies at the various locations in the vicinity of the River Club shown in Figure

There has been a lack of consistency in the modelling methods and in the resolution at which the upstream catchment area has been modelied. In addition, the more recent models have incorporated
climate change considerations. Therefore, undertaking comparitons between the different results is not climate change considerations. Therefore, undertaking comparisons between the different resuits is not
directly possible. On the other hand, it is evident from Tabte 2-1 that there are inconsistencies in the resuits of the various studies. An overview of each of these flood line determinations and other relevant
investigations is provided below.
2.1.5 Climate Change considerations

Human interference with the cilmate system is occurring, and climate change poses risks for human and natural systems' (IPCC, 2014b). Within urban areas, it is generally predicted that the increase in
global temperatures associated with climate change will be exacerbated as a result of the urban heat global temperatures associated with climate change will be exacerbated as a result of the urban heat
island effect (IPCC, 2014a). Willems et al. (2012) indicate that rainfall intensitles are typically expected to be increase by the end of this century (2100) at small urban hydiology scales by between 10% and 60% from historic levels recorded between 1961 and 1990. A recent stormwater master planning report
for the Cily, SRK (2012) indicated that it was necessary to increase the modelled rainfall depth for design for the Cily, SRK (2012) indicated that it was necessary to increase the modelled rainfall depth for design
storms by 15% to account for changes in the intensily of extreme events. This was based on an analysis storms by 15% to account for changes in the intensily of extreme events. This was based on an analysis
of the potential impact that climate change might have on rainfall intensilies in Cape Town, and incorporated into this study.

Other expected impacts of climate change are a rise in the global sea level and increased storm intensilies. PRDW (2010) undertook a study to provide estimates of the expected storm surge and wave
setup corresponding 1:20 year, 1:50 year and 1:100-year frequencies and provided best and upper setup corresponding $1: 20$ year, $1: 50$ year and $1: 100$-year frequencles and provided best and upper
estimates of sea level rise in 2035 and in 2060. It was agreed with the City that the levels provided by estimates of sea level rise in 2035 and in 2060. It was agreed with the City that the levels provided by
PRDW (2010), and used for Royal Haskoning DHV's (RH-DHV's) (2017) investigation of the TRUP site, should be used for the current investigation.
2.1.6 The effect of further urbanisation / changes in land-use within the greater Salt River Catchment

Urbanisatlon typically results in an increase in the impervious surface area, which has signlifcant impacts on a watershed's hydrology (Shuster et al., 2005; CSIR, 2005; Leopold, 1998; Walsh, 2000). Leopold
(1968) noted that the volume of runoff is primarily determined by the soil's infiltration characteristics. The increase in the impervious area associated with urbanisation results in greater volumes of nunof and higher peak flows. Urbanisaiion can also result in significant changes in how runofi is conveyed in most urban areas (Marsalek et al., 2006). Historically, natural channeis have oflen been replaced
hydraulically highly efficient concreted channels. While the increase in impervious areas results in increased runoff volumes, Fletcher et at. (2008) hightighted that 80% to 90% of the increase in peak flows can be attrbuted to the nalune of the convey

Long-term catchment planning and management is the responsibility of the City, and not the developers of individual sites within a catchment that is significantly farger than the individual sites. In the case of
the River Club the area of the sile is less than 0.1% of the area of the Sall River Catchment. The City the River Club the area of the sile is less than 0.1% of the area of the Salt River Catchment. The City
has, fortunately, been progressive in implementing two critical policies to manage the impact of urbanisation and densification on flooding within the City. These are the City's 'Floodpiain and River
 (CSRM. 2009b) - as discussed above.
This report describes the determination

This report describes the determination of the impacts that the proposed development is expected to
have on properties in its vicinity - in accordance with the policies discussed in Section 2.1.3.
2.1.7 Flooding in urban areas

It is important to recognise that not all flooding in an urban area is necessarlly related to the flows in a nearby river. The piped underground stormwater system is typlcally stzed for smaller recurrence interval
events (typically for flood magnitudes smaller that than the 1 in 2 -year, 1 in 5 -year and 1 in 10 -year events - depending on the design criteria) (CSIR, 2005). It is usually planned thal during larger storm
events (with flood magnitudes greater than the 1 in 2 -year, 1 in 5 -year or 1 in 10 -year events -

There have also been a number of academic research projects that have considered aspects related to
floading of the River Club Site. These include Lurie (1954), Giermek (2015) and Fisher-Jeffes (2015).
All the above-mentioned studies are briefly described below.

$$
\text { Flgure } 278
$$

-

1:100 Year Storm Event - Water
Location 1 Location 2 Location 3

Climate Change
Increased
Rainfall
Sea Leved

Report
ARCUS GIBB
Ninham Shand²
SRK²
AED
Royal
HaskoningDHV
2.2.4 Giermek (2015)

As part of a Master Degree research project Giermek (2015) undertiook an investigation of the benefits of the attenuation provided by the Valkenberg wettands immediately upstream of the River Club site.
The study found that the welliand (+- 2 hectares) was most effective at attenuating rainfall events with "sudden spikes in peak flow, where a 42 per cent reduction of peak flow was observed. For a scenario with lower flow rates yet a protonged peak flow rate, the welland was less effective, with a 20 per cent reduction observed." It is important to note that the model for this study was not calibrated and only
considered three rainfall events, all in 2013 .

2.2.5 Fisher-Jeffes (2015)

Fisher-deffes (2015) undertook an investigation of the viability of rainwater and stormwater harvesting in the residential areas of the Liesbeek River Catchment, City of Cape Town. The study focused
exclusively on the Liesbeek River Catchment and did not consider the effect of the greater Salt River catchment on the River Clut Site. While the study indicates that stormwater harvesting (SWH) throughout the catchment (in a decentralised manner) may have the potentlal to significantly attenuate peak flows and flooding in the catchment, this does not necessarily equate to the same benefits being
experienced if stormwater harvesting / altenuation were to take place on the River Club Site. The study
 that a decentralised approach to attenualing stormwater would not be practical (to retrofit the catchment at this point) as, apart from the open space at the River Club (which would require a centralised
approach) it was shown that the majority of the remaining open space is oither not siluated in areas
 as school sports flelds. Thus, the study recommended SWH be considered at the planning stage of any future seillement.

2.2.6 AED (2016)

LLPT appointed African Environmental Development (AED) to undertake a flood line determination study as part of the scoping study for the proposed development. LLPT subsequently appointed Aurecon
to review the AED study. The review indicated the following:

- The resuits of AED's hydrological analyses were significantly more conservative than any of tha other studies with the $1: 100$-year storm event having a peak flow of $336 \mathrm{~m}^{3} / \mathrm{s}$. The other studles indicated
a $1: 100$-year peak fow of approximately $250 \mathrm{~m}^{3} / \mathrm{s}$. AED's peak fows for lower recurrence interval storm events are also higher than those of the other studies. The difference in flow rates between the
AED study and olher studles is a result of the methods used for runoff determination and routing of AED sludy and olher sumpfthrough the catchment.
- AED used an in-house developed spreadsheet based model for determining flood levels. The spreadsheet utilised seven river channel / floodplain cross-sections and took account of bridge
backwater effects by Increasing channel roughness coefficients at brdge locations. The spreadsheet did not take tidal effects or sea level rise due to climate change into account. The higher AED flow
rates and the coarser spreadsheet based determination of flood levels resulted in higher flood levels fales and the coarser spreadsheet based determination of flood levels resulted in higher flood levels
for all recure interval events. In the case of the $1: 100$-year event, the $A E D$ flood levels are
between 0.5 m and 1.0 m higher than those of the other studies.
- The configuration of AED's hydrological and hydraulic models made it difficult for AED to respond to queries regarding the impact of the proposed development on surrounding areas during lower order
flood ovents (i.e. the annual, 2 yoar and 5 -year events). Also, the effects of tides and sea level rise flood ovents (i.e. the annual, 2 yoar and 5 -year events). Also, the effects of tides and sea level rise
on flood levels at the River Club site could not be accurately assessed in the spreadsheet model. a AED identified, as did previous studies, a need to maintain the overiand flow route through the PRASA
owned land.

 The Two Rivers Urban Park (TRUP) Programme is an initiative resulting from a partnership between cultural resources while concurrently developing the TRUP area for residential, commercial, institutional manufacturing and recreational activities, aimed at generating a wide range of housing, recreation, business and employment opportunities,
that people can live lives that they value.

Following extensive work undertaken primarily by NM\&A, a concept for future development of the TRUP was developed in order to make a preliminary assessment of the capacity of services in the area as indicated in Figure 2-10. Although the TRUP development proposals are not yet available, this that the developable area (on the River Club site) according to the TRUP 'vision' is significantly less than that proposed by LL. PT for the development of this site.

Therefore, it is Aurecon's opinion that the flooding on the site is consistent with the modelling to date of
floods with a frequency of recurrence of about once in every 2 to 5 years.

The available records for the last 17 years shown in Figure 2-8 indicate that there have been The available records for the last 17 years shown in Figure 2-8 indicate thar there nave been
approximately 7 occasions when the River Club Site was inundated with water - generally considered 'flooded'. This is not surprising as most modelling indicates that any event greater than about the 1 in 2 year flood event is likely to result in flooding - depending on the spatial and temporal distribution of the storm event in the catchment. Therefore 'roughly' it is not unreasonable to expect a number of storm
events to have resulted in flooding on the site in the past 17 years. It is worth highlighting that: * Four of these events take place in a five-year period between 2007 and 2012. During this period the lower reaches of the Liesbeek River shown in Figure $2-9$ were partially obstructed due to a structural
failure in the canal wall and a lack of maintenance. These partial obstructions resulted in a reduced
 be misleading to incorporate them into a frequency analysis.

The recurrence interval of a storm event does not imply that it occurs on a regular basis. A five-year storm does not take
for the next 20 years.

2.4.1.1 Comments on the concept design Aurecon raised a few queries with regard to the existing
the flood plain. These questions, and answers, included:
Whether the proposed open space (No. 1 \& 2 in Figure 2-10) will go ahead as they ovarlay the existing
M5?
Mammon (2017) noled that these areas are part of a long term landscape scenario to deck over
the M5. Mammon (2017) further noted that it is highly unlikely to be implemented in the short to medum term but potentially could be considered in the next $50+$ years. Mammon (2017) conduded
that "/t is an idea and not a reallstic proposal for vhere we are at as a govemment and city." Aurecon would agree it is unrealistic and therefore has not incorporated it into the modeling.
Whether the developable fand (No. 3 in Figure 2 -10) will be limited to the South West and not cross
the road as it currently does / the road will not be moved nearer to the river? Mammon (2017) noted that the response here is simllar to that above.
Aurecon allowed for this development, assuming the road could move - even 11 it is unlikely - as
thts would potentially afficet the floodplain. Whether there is an intention to develop areas
Mammon (2017) noted that the intention is to develop the Valkenberg Hospital Site in the long term
notwilhstanding the fact that thls site has upgrade plans in place. The dark grey comer portion can

cumecon

Figure 2-13 Existing NRF devolopmant proposal

For the purposes of ithis investigation it was assumed that the currently accepted hydrological and HEC-RAS models, and provided to Aurecon by the City, are correct. Within the detalled modelling area
 were identified these were rectified based on the available data. Althoug
to improve the data it is possible that all the emrors were not identified.
3.1.1 Hydrological parameters
3.1.1 Hydrological parameters refers to the ' $1: 100$ year flood'. While it is generally assumed that the $1: 100$-year fiood event is synonymous wilh the $1: 100$-year rainfall event, this is not always the case. Several factors affect the
relationship between rainall and runoff, including: the extent of rainfall in a calchment, antecedent soll relationship between rainfall and runoff, including: the extent of rainfall in a calchment, antecedent soll
moistura conditions and the size nand shape of the catchmont. For the purposes of this study and in
mither accordance with Chy's requirements, the 24 -hour $1: 100$-yoar SA SCS Type 1 design rainfall event.
adjusted to allow for climate change in accordiance with SRK (2012), was used to simulate events with sdjusted to allow tor climate change in accordance with SRK (2012
recurrence intervals of between 1 in 2 years and 1 in 100 years.

As noted above, all the remaining catchment / hydrologic parameters used in the SRK (2012) models As noted above,
were adopled.

3.1.2 Manning's roughness

The increased resolution of modelling of the hydraulic system (rivers and stormwater network) for the
 was modelled. The roughness coeffcients used for modelling in this study were based on the fow ind of the roughness coefficients used in the RH-DHV (2017) study. It was decided to use a Manning's coefficient of 0.015 for ains slormwater flood plains are shown in Figure 3-1.

The selection of Manning's Roughness coefficients was further checked againsl those advised by the
Kruger \& Gomes (2007).

Figuro
3.1.3 Digital Terrain Model (DTh月) To undertake 2D modeling - as requred by
Digital Terrain Model (DTM). This DTM was generated as follows:
A 0.15 m DTM was crealed from
surface).
RH-DHV (2017) identified that a comparison between the various topographical surveys
undertaken for the River Club and the original LiDRR data indicated that the LiDAR levels were
points were raised by 0.25 m .

- RH-DHV (2017) further noted that "it was later confirmed by the City of Cape Town surveyor that
a corre
wall."
Aurscon requested a topographical dataset from the City which had already been corrected. As
this is the mast recent topographical data, and appeared to best represent the site, it was used by
Aurecon for all modelling.
The underwater profles of the river channeis were generated as follows:

[^1]
3.1.6 Accounting for intra year events The City has developed standard design sloms and hydroioglcal. These storm rainfalls and flood

 modelling area, as weli as he pridar or smaller storm event is, statistically speaking, not possibie as it Providing the parameters for a 1 -year or smaller storm event is, statsicically speaking, not poss
 in 2017 , It is possible that such an event doess nole and would provide the required insights. The layouts tor the proposed development have evoved in uge Lesbeek River Canal into a more
 Raapenberg wetlands and is seen as improving the overall functioning of the ecological systems in 1 Rarea. The changes have resulted in two primary development options:

Oplion 1 (Figure 3-4) - which envisions the transtomation of the Liesbeek canal and the partial fliling
Option 2 (Fgure 3-5) - which leaves the Lesbeek canal and 'old Liesbeek River largely untouched.
On account of the backwater effiects of the downstream railway bridges - essentially causing a damming On account of the backwater effects of the dow sifferences between Options 1 and 2 are inconsequenitial.
effect thal Impacis on the River Club site - the
Inere
layout.
It should be noted that the proposed development is not explicitly in accordance whe chy to make
'Floodplain and River Corridor Management Policy (CSRM, 2009a) and would require the exceplons for the following provisions:

Section 9.2: Flood Management and Public Sarety
To be granted. 10.5 : Table 1: Framework for the assessment of Proposals

- The current assessment framework forbids development (inctuding nilling) within the 50 -year flood
 be considered, provided
development precincf.

As the proposed dovelopmant falls under the 50 -year flood ine, a deviation from the policy,
allowing the developer fo fill (considered develtopment) would need to be granted. Notwithstanding the above, the city could approve the development based on the "geomarphological.
maintenance, social and economic aspects" (presented by other specialists), and on the findings of this
study. study.
 PCSWMMM-2D was used as the primary tool for analysing the impact of the proposed River Club - The Gity had recentry used PCSWMM for a similar study of the area and therefore the use of PCSWMM incorporates the minor stormwater system into the model - which is important within an : The background models - previous studies prepared for the City - were SWMM based.
For the current study the PCSWMM models were set up as 1D-2D models. This models the minor stormwater system and the river channel as 1D condutits and the floodplain as a 2D mesh. The selection
of the mesh resolution was important as higher resolution meshes result in longer model run times, of the mesh resolution was important as hlgher resolution meshes result in longer model run witution whereas lower resolution meshes might affect the reliabillty of the results. The selected mesh resh in the
used within the modelling area is shown in Figure 3 -6. As is evident from Figure $3-6$, the mest used within the modelling area is shown in Figure $3-6$. As is ever fortition than the mesh for areas of
vicinity of the River Club was generated with a significanlly higher resolitand
less interest - e.g. Paarden Eiland.

aurecon
Q. HECRAS HEC-RAS 5.0 .3 was used in this study to moder HEC-RAS have their own strengiths and weaknesses for modelling and therefore if was decided to undertake the additional HEC-RAS modelng as a com.
model. HECRAS mesh (Figure 3-7), the same break lines that were used for the PCSWMM mode were used and supplemented by break tines along the centres and edges of we restive rivers in the HEC-RAS model was ulilised due to the HEC-RAS model being a fully 2 D model, and because of HEC-RAS's computave the methods. It was also necessary to ensure that the edges of the river (sometime
surounding area) were clearly defined to prevent 'leakage' within the modelling.
HEC-RAS is currently unable to model bridges in the fully 2D modelling environment, and as noted in Neelz \& Pender (2013) there is a degree of uncertainty conceming the linking of 10 channels and (rather
2 D flood plain. Therefore, it was decided to use HEC-RAS in a fully 2 D modelling environment 2D flood plain. Therefore, it was decided to
than the $1 \mathrm{D}-2 \mathrm{D}$ modelling environment) and to overcome the existing restriction with regard to modelling
on

- Both approaches make use of open source software, and therefore once the 2D mesh was generated it was imported into
HEC-RAS made use of the same DTM's and land-use 1 roughness parameters as SWMM.

Accuracy of Rodels
3.5 Accure

The City has, historically, preferred two models for hydraulic and hydrological modeling.
hydrological determinations have lypically been umin routes the runoff from multiple sub catchments by with HEC-RAS. It is worth noting hat the PCSO the it is not purely a hydrological model. PCSWMM's

 is not an exact deterministic science - different models and modellers may 2 Mol Moding approach -
is further complicated by the selection of modeling approach. PCSWMM
 the full $2 D$ momentum equation. On the other hand, HEC-RAS uses the 'diffuse wave solution' - as opposed to the 'full momentum solution' - which runs faster and is more stable. White the full momentum solution is considered more accurate it does require calloration - as do an modis - and is in not possible.
contains more parameters for which values are uncertain - especially when calibralion The variation in modelling results is evident in the recent 2 D bench marking studies - based on the original benchmarking study by Neetz \& Pender (2013)-where the results varied for a variaty of reasons
between the different models as shown in Figure 3-8. It is worth noting that when PCSWMM modelled
 the scenario the results (overiaid on top of
also modelled the same scenario and its resuits were aiso reasonable. There were differences belween also modelled the sam momenturn and diffuse wave solutions of about 300 mm - as shown in Figure 3-9. Essentially, a review of both the PCSWMM and the HEC-RAS models indicated that both provide reasonable 2D modelling results.

ambecon
3.5.1 Model complexity models have been developed. Wainwright \& Mulligan (2013) state that an 'optimal model is one tia
 sometimes assumed that the reliabllly of a model will increase with is complexky a
that beyond this, the reliability will decrease (Figure 3-10). James (2005) notes that this has never been

 important principle in modelling since our ability to model complexity is much greater than our ability to provide the data to parameterize, calibrate and validate those same models'(Nainwright \& Mulligan,
2013).

It is difficult to determine the required level of complexity, as there is no accepted measure of this It is dilifult to determine the required level of complexity, as there is no accepted measure of
(James, 2005). However, experience and intuition will assist in the development of good models
Wainwright \& Mulligan, 2013). (Wainwright \& Mulligan, 2013).

Data are crucial for the development and calibration of reliable models. In theory, the more data
available, the more reliable the model should be (James, 2005). There is a relationship between available, the more reliable the model should be (dames, 2005). There is a relationship between complexity and the amount of data that is available as shown
complex model will be more uncertain than a less complex model with minimal data, but less uncertain complex model will be more uncertain than a
100% reliable

Model complexity
Figure 3-fil: Relationship between complexity and rallablity (After Jambs, 2005)

 not offer adequate reliability (Wainwign a Moles a model or representation of reality than ts absolutely
ideally is preferable to select 'no more comp
necessary' (Wainwright \& Mulligan, 2013).

Figure 3-9 Comparison of the 20 modelling results for a valley flooding scenario (Test 5 , Point 3$\}$ (Bnumar, 2016)
a da
both HEC-RAS and PCSWMM could be used, il is considered that because of the urban nature and
 representation of the flooding for the various flood recurrenca
was used to confirm that the PCSWMM results were reasonable.
 Or Day - the appointed Fresh Water Ecologist - - dennined wellands as a critical component of her study. Initially, this was to be achieved by utilising flow data collected by the City. Of the two gauging stations, only the downsiream station (Giamis Close) was in operation. After an analysis, and ciaaning of the data it was determined that the data was nol reliable. Would not be of use in assessing the impact on the Raapenberg Weitands. If was therefore declded that it would be necessary to approach this aspect the surface waler study differently. This was done by surveying the Raapenberg wetiands, and usinial hydrological and hydraulic impacts. The survey identified a number of important features of the area: a The water level in the Raapenberg wellands is approximately 250 mm lower than that in the
There is evidence of wetland vegetation that grows in brackish water.
There was an informal intervention shown in Figure 3-12 which was to excavale vith the intention of increasing i allowing flows into the watland. This intervention was performed by a "Fiends of ine

There is an artificial channel that seems to have been created atong the boundary of the SAAO
property. This is not linked to the Liesbeek or Black River Systerns.

Flgure 3-12 intervertion that encourageas flows into tha wetiands
The findings of the site visil suggested:
 Considering that this catcrment momplex (i.e. full momentum 2D model) to be of much additiona reasonable to expect a very complex model (t.e. fuil momentum the modelling of bridges.
3.5.2 Advantages and disativantages of the different models Both HEC-RAS and PCSWMM provide reasonable results. Each model has its own advantages and disadvantages as follows.
7 HEC-RAS is generally better for modelling large river systems;

- HEC-RAS 10 is better at modelling bridges and infina stucture
- HEC-RAS 10 provides a more accurate Energy Grade Line (see Section 3.7)
- HEC-RAS 10 provides a more accurate Energy Grade Line (see Section 3.7)
- HEC-RAS 2D is currently not capabte of modelling bridges and instead assumptions - much as for
SWMM - need to be made. SWMM - need to be made. HEC-RAS $2 D$ can imptement the full momentum $2 D$ modely results.
this adds further uncertain parameters which may affeet the res PCSWMM is generally better for modelling in urban areas:
Models the slormwater system - both major and minor - which allows it to highlight potential
trapped low points and back flooding through the stormwater system - Does not discretely model bridges, but approaches have been developed and tested that account for the energy losses at the
- SWMM 2D-a'quasi' 2 D model - allows for the incorporation of the minor stormwater system with
sufface flows. While the Black River is a 'large river' for Cape Town, it is not particularly large when compared lo other rivers in South Africa and across the world. The sumounding urban areas are relatertant and useful as thus boing able to incorporate the minor stormwater systems in the mode is evidence that some of the flooding is due to the minor systems surcharging. Therefore, while

An increase in the recurrence interval of flooding would have a negative effect on the functioning of An incease. Therefore, the pre- and post (prop
the welland
delermine when the wetland would fill with water.

The increase in volume flowing into the wetland would have a negative impact on the functioning of the welland as the welland is nol primarily a frestiwater system, and beccio inte the welland cannot
would result $t \mathrm{~m}$ a change in the distribution of different plant species (Fiow in would result in a change in the distribution of different plant species (Flow int ane welland cas and
drain out due to the differential in the water tevels in the welland and in the nearby rivers). As such
the pre-and past (proposed) development scenarios were modelled to determine when the wetiand the pre- and past (pro
would fill with water.

2004 Ninham Shand undertook a study on behalf of City which investigated the possible widening of the Salt River Canal. This emanated from a review of a 1957 Council proposal for flood reile nvolved widening, and in some areas, concrete inigh current width of 46 m to 61 m (an increase of The widening of the Sall River Canal Commillee approved a recommendation by the Utilities and Works
15 m). In 1974 , the City's Executive Com Committee that the Sall River Canal (canal downstream of the Rallway Bridges) be widened (by in To date, some of the required land is still not owned by the City and the widening of the canal has no been Implemented.

In the 2004 Ninham Shand sludy, and in line with the 1974 scheme approved by the Execulive Committee, all existing road and rain bl. The resutts indicated some significant changes in the elevation of the llood line. When these elevalions are plotted on the latest DTM, the benefits of this scheme are oniy realised in the vicinity of the PRASA
site - Figure 3-13. It is important to note that the Ninham Shand repori of 2004 was produced prior to site - Figure 3-13. It is important to note that the Ninham
the adoplion of climate change and sea level rise factors.

The TRUP study（RH－DHV，2017）also considered widening of the Salt River Canal．The study examined the polential benefit of widening the canal by modelling an addilional 25 m wide rectangular can of parallet with the Black River channel and the existing Salt River Canal，together would be possible to
bridges crossings． It is uncertain why 25 m was selected，and it is unlikely that it woul ordges crossings．It is uncertain why 25 m was seled． ， there would be a predicted reduction of 0.83 m in the water level due to the

DHV report noted that canal entargement woutd invoive slgmer the possible effect of widening the canal The city，none the less requested that thls study also consider ine possion ene
and removing any rest be engineered／re－angineered to not affect the flow in the Salt River－i．e．span The bridge
the river．

The canal was assumed to be a 61 m rectangular cross－section－with the same invert levels as the existing canal．

Such a scenario would represent the＇absolute best case＇scenario and is，in Aurecon＇s view，unlikely to
ever be reallsed．The City，however requested，that no option／possiblity should be excluded．
年名
It was noted that the survey showed that sediment had bulitup at the Sall River Canal was only one
ocean．A review of historic images－on Google Earh－indichen build up－meaning if had 100% of its
$\begin{aligned} & \text { the canal with its full capacity．This may not happen for smaller floods．Therefore，all recuet the } 100 \text {－year } \\ & \text { were modelled assuming the sediment would not erode（worst case scenario），except }\end{aligned}$
$\begin{aligned} & \text { were modelled assuming the sediment would not erode（worst case scenario），exce．} \\ & \text { event which was modelled twice assuming that the sediment would／would not erode．}\end{aligned}$
Figure 3.14 Evidence of sediment at the mouth of the Salt Rlvor for 18 of the last 17 yoars．
3．
As highlighted in Section 2．2，all the previous studies have identified a major storm event flood route
across the PRASA site．There has been concem about what would happen if this flood route were to be
closed．While doing so would be illegal and counterto the City＇s policies，the City nonetheless requested
that this scenario be modelled．In order to do so it was assumed that PRASA would berm the＇old＇

Liesbeek so that flood waters would not flow onto its property．This scenario was tested for both the
Liesbeek so that flood waters woild
status quo and the post development scenarios．
3． 1 ？ n ater surdee 45 eners It is important to note that all results in this report，and all conclustons drawn from（we ）．This is contrary are based on simulated Waler River Coridor Management Poticy＇（CSRM，2009a）（developed prior to the lo the City＇s＇Floodplain and River Coricor Maises that＂all flood innes must be based on the theorelical
widespread use of 2D modelling）which require energy level as oppased to the water surface lever．These requirements are most appropise of energy models，vhereas on this site the Cily has indicated a preference for 2D modeling．The usa of by the boundary＇between＂wet＂and＂dry＂celts．At the edge of the flood extent flow velocilies are typlcally minimal
level．
Where the energy level has been provided，this has been done by adding the energy head（V／2g）to
the water level．

 flood plain management，the hazard that iosed on the ability to wade or gain vehicular access as well as
Hood waters（excluding water quality）is based the stablity of strucluras such as dwellings or boundary walls．If these are likely to be seriously compromised，the area is consldered
and River Corridor Management Policy＂＂No new or additlonal rights or the exerctsing of existing development rights will be granted to properiies
accordance with Figure $3-15$（CSRM，2009a）．

This study assessed 35 Scenario's with a total of 38 model runs utillsing two 2-Dimensional hydraullc
 and therefore only relevant information from the over 900 GB of output data which was generated is

 M-

Wrthermore, the City's 'Floodplain and River Comidor Management Polliy' (CSRM, 2009a) notes that:
subject to stringent evaluation and control in the interests of public safety. In particular, obstruction to
the free flow of water within the 20 -year flood line area shall not be permitted. However, between the 50
and the cify may in its discretion impose, while developments with particular evacuation or emergency
$\begin{aligned} & \text { as the cify may in its discretion impose, while deveropments with particular evacuation or emerg } \\ & \text { response issues and high nisk developments will only be pemitted above the } 100 \text {-year flood line" }\end{aligned}$
$\begin{aligned} & \text { response issues and high risk developments will only be pemitted above the } 100 \text {-year flood line" } \\ & 3.12 \quad \text { Sensitivity Annalysis } \\ & \text { In order to ensure that any queries relaling to the accuracy / reliability of the Cily's hydrologic models } \\ & \text { for the greater Salt River cathment could be quantified, a sensilivity analysis was undertaken by } \\ & \text { modelling a storm with a } 1 \text { in } 200 \text {-year Recurrence interval using the same approach as discussed in } \\ & \text { Section } 3.1 .6 \text { for the scaling of intra-year events. }\end{aligned}$
$\begin{aligned} & \text { response issues and high nisk developments will only be pemitted above the } 100 \text {-year flood line" } \\ & 3.12 \quad \text { Sensitivity Annelysis } \\ & \text { In order to ensure that any queries relaling to the accuracy / reliability of the Cly's hydrologic models } \\ & \text { for the greater Salt River catchment could be quantified, a sensilivity analysis was undertaken by } \\ & \text { modelling a storm with a } 1 \text { in } 200 \text {-year Recurrence interval using the same approach as discussed in } \\ & \text { Section 3.1.6 for the scaling of intra-year events. }\end{aligned}$
$\begin{aligned} & \text { response issues and high nisk developments will only be pemitted above the } 100 \text {-year flood line" } \\ & 3.12 \text { Sensitivity Analysis } \\ & \text { in order to ensure that any queries relaling to the accuracy / reliability of the City's hydrologic model } \\ & \text { for the greater Salt River catchment could be quantified, a sensiltvity analysis was undertaken by } \\ & \text { modelling a storm with a } 1 \text { in } 200 \text {-year Recurrence Interval using the same approach as discussed in } \\ & \text { Section 3.1.6 for the scaling of intra-year events. }\end{aligned}$

For the purposes of this report the twelve key 'monitoring points' indicated in Figure 4-1 were selected For the purposes of this report the welve key montion
for comparison purposes throughout Section 4 in this report. These points were selected to represent
areas where any impacts of the proposed developments are most likely to be realled / areas where any impacts of the proposed developments are most likely to be reallsed $/$ be of concem.
If necessary, the models can be used for comparisons at any point within the modolling area.

愘全 Acturacy of the models
The PCSWMM modets performed well, as all the models had 'routing continuity' and 'runoff continuity' A comparison of the PCSWMM and HEC-RAS models showed the following:

- The HEC-RAS (Diffusion Wave model with the bridges modelled as ID gates) and the PCSWMMM models provided results that were within 0.01 m of each other. Such differences were considered to
be very good, especially considering the differences in ways that each of these programs models the

When HEC-RAS (Full Momentum equation with the bridges modelled as 1 D gates) was used there
appeared to be an increase in the backwater effet of the bridges immediately downstream of the
River Club site. This appears to be as a result of a contination of adding the momentum component River club site. This appears to be as a resutt of a connbination of adding the momentum component
of the 2 D equation and the manner in which the bridges were modelled (1D) within the 2 D mest. The results were compared with the results of previous models (especially Ninham Shand, 2004) and it
seemed that the use of the full momentum equation with 1 D elements within the 2 D mesh (Brigges) resulted in some modelling instability.

[^2] 4．2．4 Impact on the extent of inundation

		䓂				药			
呂	员	\％	\％		\％ 0	号	号	\bigcirc	－
\％	\％		0		\％$\%$				\cdots
\％	\％	0	0°	웅	\％ 0	\％	－	\％	－
$\stackrel{\circ}{8}$	\％	8	\bigcirc	\％	\％ 0	\％	\％	\％	\cdots
\bigcirc	－				웅ㅇㅇ				\checkmark
$\%$	8	$8 \mid$	8	\bigcirc		\％	亯	宽	∞
은	㫪		08	80		\％	宫	${ }^{\circ}$	\cdots
\％	号		Eo	앙	\bigcirc	－	－	－	\％
압	운		O	\％	OR	\％	－	\％	F
\％	안		8	08		\％	宫	$\stackrel{\square}{6}$	0

 vicinity of the River Club site． PRASA，and the NRF sites and this post development scenario only including the Rver ciub－as
indicated in the RHDHV Study．This is due to the complexities of the hydrology and hydraulics in the

uojang

4.2.5 Changes in flow

The flows were assessed at the seven locations shown in Figure 4-7, and Table 4-3 provide a high-level overview of changes in the flow characteristics as a result of the proposed developments.
Table 43 indicates the changes in the characteristics of the 1 in 100 -year flood that wo Table $4-3$ indicates the changes in the characteristics of the 1 in 100 -year flood that would occur at
various locations on account of the proposed developments. The main increases in flows would occur at the Sail Left and at the Black@River_Club. These increases are also evident from the hyirographs show m in Figure $4-8$. The total volume of the flood at the Salt Left would increase by 4% as a result of he 7% increase in the peak flow. As discussed in Section 4.2.4, this change would have little effect on he aerial extent of flooding, as it would have little impact on the depth of flooding as discussed in Section 4.2.3. The additional flooding would also have little impact on the extent of the high hazard zone further
downstream as discussed in Section 4.2.6. As the flood peak would occur marginally earlier as indicated downstream as discussed in Section 4.2.6. As the flood peak would occur marginally earlier as indicated
in Figure 4-8 - which equates to a few minutes earlier rather than hours earlier and is thus of little in Figure 4-8 - which equates to a few minutes earlier rather than hours earlier and is thus of lite
significance.
The flow at Black@River_Club shows a significant, 24% increase in the peak flow that would occur for a couple hours. This increase in peak flow would occur because the proposed River Club development This would force all the flow down the Liesbeek Canal route. This increased flow results in the slightly
greater increases in flood levels in the vicinity of SAAO (Section 4.2.3). The effect though is localised greater increases in flood levels in the vicinity of SAAO (Section 4.2.3). The effect though is localised
along the course of the Llesbeek Canal (alongside the River Club site as is evidenced by the flow characteristics upstream (Black_Rlver and Liesbeek) and downstream (Sait@Railway) in Table 4-3 and Figure 4-8. Figure 4-8 clearly demonstrates that the flow, and timing of the peak, under the railway
bridges immediately downstream (Sait(oRailway) is largely unaffected. As such, the effect is localised,

Figure A-6 Maximum astent of inundation for the 100-year Rood (Vicinity of River Club)

does not significantly affect any properties other than the River Club and SAAO, the impact of potential in the damage to property and the loss of human hie is considered small. It is worth noting that the
detailed design of the 'new' Liesbeek Canal, and extension to Berkeley Road Bridge would need to Figure 4-7 Locations at which now wan analyser

Figura 4.8 Hydrographs at locations where noticeatho changes in flow were detceted $\{S O=$ Status quo; $\mathrm{PD}=\mathrm{Poast}$

4.2.6 Environmental and Proposed Development Considerations and

The increased water levels at Monitoring Point 5 shown in Table 4-2 and in Figure 4-1 arise mainly from the additional losses at the railway bridges on account of the high
waler levels further upstream appear to arise from the fotowing:
The increased fow in the channel between Points 5 and 8 with no improvements to the channel. The proposed configuration of the channel from Points 9 and 10 which was determined in accordance of the environmental constrants which include the approximately 25 m wide buffer strip to be provided
within the boundary of the proposed River Club development.

[^3]

4.2.8 Impact of the closure of the PRASA overiand escape
The analysis of the impact of closing the PRASA overtand escape route indicaled, surprisingly, that it

The analysis indicates rather limited changes to the type and extent of flood hazards - highlighted in Flgure described below:

- Circles 1\& 2: The affected area on the PRASA site is discussed in Section 4.2.4. This increase would
Circle 3 highlights a potential change in hazard that appears to border $/$ incorporate one lane of Liesbeek Parkway. This could have a significant impact. It is necessary to raise the road locally Where the hazard changes and for a short distance (e.g. 50 m either side), as agreed with the City, to
ellminate the potential high hazard caused by fooding in the 1 in 100 -year. There would also be value providing waming signs.
Circle 4 highlights the increase hazard evident in the vicinity of the Hartleyvale sports complex. This increase hazard is very localised and unlikely to have any impact -the area would normally be flooded
and is untikely to be used during extreme events such as the 1 in 100 -year storm event.
Circle 5 bighlights that the existing Berkley Road is wilhin the 100 -year flood line and low hazard zone. This is section of road is also affected in storm events greater that the 1 in 20 -year event. This
should be considered and analysed in the final design

Figure 4.9 Impact of tha development of the hinzard of nooding (Whole modet)

4.2.9 Impact of Sea Levei rise or the TRUP study conducled by RH-D.Nditions based on the recormendations of PRDW which are discussed in Section $3.1,5$ and summarised in Table 3-2 (PRDW, 2010). PRDW (2010) noted that preliminary results indicale that extreme rainfall events should be considered with storm surge events of a lower retum period (i.e. 1 in 10 year stom surge - for which they did not offor an estimate in their of a lower return period - with a 1 in 100 year flood event). As the City and RH-DHV had already agreed to using the 1 in 50 year storm surge winh a in year storm surge. However for completeness, Aurecon also modelled the 10 year storm surge with a
too yaar flood event. The results of the modelling are showm in Figure 4-13 which indicates very fllte 100 year flood event. The results of the modelling are showm in Figure $4-13$ which indicates very fille difference in the extent of flocding. Aside from the area around Paarden Elland, the water surface
elevations remain within $1 \mathrm{~cm}(0.01 \mathrm{~m})$ of each other - well vithin acceptable modelling error. There is a slight greater difference in modelled water surface elevations in the vicinity of Paarden Eiland approximataly 0.08 m - which is likely due to slightly less flooding from the canal and lower estimated
tidal levels, but this is independent of the proposed developments and rather the selection of boundary
conditions These results are not entirely surprising as the tidal hevels in Secuon account for sea level rise as a result of climate change and a storm surge which together add more than 0.8 melers to the Mean High Water Spring tidal tevel - which was used for previous studies. This larger sea lever rise would seriousiy constrain the capacity at the outfal, likely contributing to the flooding. An
The results which are summarised in Figure $4-14$ indicate that widening the channel and removing the hydraulic effects of the bridges would reduce the maximum water suriace level by between 0.1 m and
The sports fietds would not be inundated as the 'old' Liesbeek would not over top, atthough the fields
The PRASA land, also because the 'old' Liesbeek would not overtop.
There are some other minor differences befween the status quo and the post-development scenarios with the Sall River Widened. These are most marked near the existing entrance to the River che of flood inundation woutd be reduced - but not significantly.
Widening of the canal would potentially have a negative environmental impact on the Raapenberg Wettand due to the lower water levels which would resull in the wetland being flooded less frequently
Therefore, unless the value of development on the PRASA site were significant or critical as part of longtherm city/fown planning and the City were to undertake further modelling of the design of any widened channel, It is unlikely that widening the Salt River would be an economic or practical solution to flooding
in the Sall River Catchment - whother the River Club development goes ahead or not.

- The insignificant change to the extent of inundation, when the 10 -year or 50 -year storm surge is used
as a boundary condition.

This is not entirely surprising as the River Club site is located in what historically was an extensive wetland which likely drained to the ocean as discussed in Section 2.1. As discussed in (Brown \& Magoba, 2009) the site itself is in places only 2 m above mean sea level and the slope of the canal to
the ocean is very flat, in some areas it is completely flat, and there are a number of hydraulic obstructions the ocean is very flat, in some
along lis route (e.g. bridges).

Bact of the proposer aver Chub development on the SAAO buildings
 4.3.1 Impact of developing the River Club and surrounding sites Assessing the impact of flooding on the SAAO buildings is complicated as the SAAO has constructed its own berm (Section 2.1.4). As noted in Section 2.1.4, these berms were not considered as part of tins analysis. The analysis was further complicated as some of the buildings indicated in Figure 4-16, some analysis. The analysis was further complicated as some of the buildings also have heritage value, were developed in what is clearly the flood plain and are therefore are prone to flooding.

The modelling indicated that for the 1 -year recurrence interval storm event, none of the buildings would be flooded under any development scenario and that there would be no flooding onto the SAAO property. The modeling indicates that for the 1 in 2 -year recurrence interval storm event the land Bulling 1 as evident from Figure $4-16$. For the Status Quo scenario the water level around the bulling
(3.36 mams) would be just below floor level! (3.33 mamsi) during the 1 in 2 -year flood whereas for the Garcon
4.2.11 Sensitivity analysis 4.2.11 Sensitivity analysis other developments would cause small increases in flood levels (as expected due la. the increases in flow), the maximum differences between pre-and post-cevelopmen hood $0.01 \mathrm{~m}(10 \mathrm{~cm})$. Even if future models indicate increased or decreased flows in the Black and Liesbeek $0.01 \mathrm{~m}(10 \mathrm{~cm})$. Even If future models indicate increased of decreased flows in the
Rivers, it is likely that these would show similar differences in the pre-and post-development flood levels.

4.2.12 Summary of the analysis "no matter what" is done, the impact is "insignificant". It is evident that the modelling result
This is bone out by the following:

The development of the River Club, along with the TRUP, PRASA and NRF sites is likely to have an
隹 impact on flood levels, in the order of, $0.01 \mathrm{~m}-0.15 \mathrm{~m}$ depending on the storm
location. With the greatest differences expected in the vicinity of the SAAO. The insignificant changes in the extent of inundation whether the River Club proposal is taken forward
in Isolation or in combination with the TRUP. PRASA and NRF proposals; closed;

[^4]cosmic
a
h
post development scenarios (River Club Including / Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering small differences in water levels of less than 0.1 m . However, for the post development
scenario Buliding 1 (not identified as having heritage value) would be flooded slightly more frequently
and its foor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences
in damage is not possible - except to indicate that this would be marginal.
post development scenarios (River Club Including / Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering small differences in water levels of less than 0.1 m . However, for the post development
scenario Buliding 1 (not identified as having heritage value) would be flooded slightly more frequently
and its foor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences
in damage is not possible - except to indicate that this would be marginal.
post development scenarios (River Club Including / Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering small differences in water levels of less than 0.1 m . However, for the post development
scenario Buliding 1 (not identified as having heritage value) would be flooded slightly more frequently
and its foor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences
in damage is not possible - except to indicate that this would be marginal.
post development scenarios (River Club Including / Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering small differences in water levels of less than 0.1 m . However, for the post development
scenario Buliding 1 (not identified as having heritage value) would be flooded slightly more frequently
and its foor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences
in damage is not possible - except to indicate that this would be marginal.
post development scenarios (River Club Including / Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering small differences in water levels of less than 0.1 m . However, for the post development
scenario Buliding 1 (not identified as having heritage value) would be flooded slightly more frequently
and its foor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences
in damage is not possible - except to indicate that this would be marginal.
post development scenarios (River Club Including / Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering small differences in water levels of less than 0.1 m . However, for the post development
scenario Buliding 1 (not identified as having heritage value) would be flooded slightly more frequently
and its foor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences
in damage is not possible - except to indicate that this would be marginal.
 5 years to a depth of about 0.15 m deep. Although the increased depth would have an impact, this would

 Figure 4-18 Watar surface elovations during the 5 -yosr recurrence interval stom evant for deffarent developmont
For larger storm events the pre- and post-development impacts would be similar with very slightly
higher flood levels for the posi development scenarios.
4.3.2 Mitigation options
It is important to recognise that these properties were buill within the 1 in 2 to 1 in 5 -year flood plain and
therefore are prone to flooding. The only real option to protect these buildings would be to construct a therefore are prone to flooding. The only real option to protect these buildings would be to construct a
protective berm. As mentioned in Section 2.1.4, without the knowiedge of the Cily's stormwater department the SAAO constructed a berm along the boundary of thelr property. The top of the berm varies between 3.6 mamsl and 4.14 mams. It is 隹价 that this will only protect the SAAO bulldings from
the 1 in 2 -year recurrence interval storm events. This berm could be raised to protect these properties, the 1 in 2 -year recurrence interval storm events. This berm could be raised to protect these properties,
from larger stom events. Raising the crest the berm to aboul 4.8 mamsi would provide protection for
the 100 -yeor recurrence interval event although this would pose a signifficant risk to the occupants of

than the evaporation rate. The part of the wettand South of the footpath extending from Observatory
Road lowards the $M 5$ appears to be connected to the iver System at some point upstream and also
has a higher surface waler level that the primary welland that borders the SAAO.

While not explicilly tested, the altenuation benefils of the wetland are clearly innited. Prior to canalisation of the rivers, the wetlands wouldy - unfortunately this situation is not reversible.

An interesting outcome of the analysis is that the current post development scenario would suggest that the water level would drop - albeit by 0.03 m - for the 1 -year storm event. Therefore, it is possible that the proposed wider channel would offer some attenuation benefits over the existing stiuation for tis event although thls is within the maryin of error and retatively insignificant. For
(greater than 1 -year recurrence interyal) there would be no attenuation benefit.

Effectively, the analysis indicates litte to no significant change in the performance of the wetland, as long as the recent intervention is reversed.
An interesting observation on site which is confirmed by the survey, is that the water levels in the Black and Llesbeek Rivers are higher than the water level in the wefland by approximately $100-150 \mathrm{~mm}$ -
Figure $4-20$. This indicates that the wetlands are not. yppically, filled with water from the surrounding Figure 4-20. This indicates that tre wetlands ane note yplow, direction into the wetlands. In fact, it would
rivers - although the hydraulic gradient would indicate a flo
appear that the hydraulic conductivity of the soil $/$ peat that makes up the wetland is equal to or lower

The intervention undertaken by the Friends of the Liesbeek, TRUPA and SAAO which is shown in Flgure 3-12 has effectively reduced the level at which the wetlands are likely to in and emply, to aboul 2.25

 equates to 250 mm lower. Assuming an evaporation rate of would equate to a reduction of about 60 days before the water volume stored in the wetland is evaporated away. This could be compensated by more frequent flooding, but it is Aurecon's
understanding from Dr Day, that an Increase in flood frequency may have a negative impact on the understanding from Dr Day, that an increase in formats performance as it could decrease the sall levels in the wetland.
the buildings if the berm falied. The berm would probably not have any significant impact on flooding eisewhere.

In Section 3 it was mentioned that estimating the rainfall for a stom with a recurrenco interval of less than about 1 in 2 years is slalistically problemalic. Based on the modelling undertaken as part of this study - both in PCSWMM and HEC-RAS modelling - it would appear that the wellands would receing inflows from the Liesbeek Canal when the water surface elevalion is in the region and a fecurrence interval of between $1 / 2$-year and 1 -year. Once water enters the wetland, and the wetland is flled to +-2.5 mamsi the wetland becomes part of the flood plain area offering limited ofline storage. The welland appear to drain below a level of +-2.5 mamsi (the level at which now ente to approximately 1 m of standing water at the deepest points in the welland it seems that thls water evaporates over time. Evaporation at Observatory is estimated to be approximately $1.5 \mathrm{~m} / a n n u m$, and rainfall about 0.6 m/annum. This would suggest that over a typical I average year the water levels would fluctuate in the wetland. If there were successive droughts - as in $2015,2016,2017-1$ in possiding
that the wetland could dry out should there not be a storm of sufficient magnitude to result in flooding into the wetland.

faclity would require the City to invest significant resources in design, operation and maintenance with limiled benefit in terms of reduced impacts of flooding. If an alternative to flood attenuation is required it would likely be more appropriate io implement the original long-term plan of widening the channel.
However, were the City to consider the potential for ulilising the site fo attenuate storm events, it would need to consider the following:
The site would need to be excavaled to provide additional storage.
The site would need to be excavaled to provide additional storage.
The City would have to have the resources, to actively manage the site as either a Real-Time Control
The Owners of the River Club would need to be willing to sell their land, which would nikely be at a
Conisidering the above. it is unlikely, that the River Club site will be developed as an attenuation facility.
Based on the avallable literature the benefits are unlikely to be significant - in terms of reduced flood
damage.

Section 4 provides a detailed discussion of the potential hydrological and hydraulic impacts of the completed as shown in Table 5-1. The impact for the proposed development (any alternative) without completed as shown in table $5-1$. The impact for the proposed development (any alternative) wino u low (${ }^{\text {tee }}$) significance. This impact is manageable to a limited extent, but once the site is develop will not be reversible.

$$
\begin{aligned}
& \text { Toblo 5-1 Sigglifeance of increased flood hazard } \\
& \text { Low ie Medium } \\
& \text { Low } \\
& \begin{array}{l}
\text { Essential mitigation measures: } \\
\text { - Rise the Liesbeek Parkway locally (as discussed in Section 4.2.7) to eliminate potential wish Hazard flooding }
\end{array} \\
& \text { Wis Local Low Location fat } 33^{\circ} 56^{\circ} 14.80^{\circ} \text { S. } 18^{\circ} \text { 28.34.13" E } \\
& \text { misgation:-1. } \\
& \begin{array}{l}
\text { In the case of the } \mathrm{NO} \text {-Go alternative, the site will continue to be used as a commercial, recreational and } \\
\text { conference facility. There would be no change to the flood risks - except those as a result of climate }
\end{array} \\
& \text { change, or development on surrounding / upstream properties. }
\end{aligned}
$$

1 in 100 year event, however ponding due to local stormwater is also likely to occur at this location
for which the provision of warning signs would probably suffice.
for which the provision of warning signs would probably suffice, The impact
negligible.

The impacts of the proposed River Club development and of the proposed Two Rivers Urban Park
development on fload levels and their extent are considered to be negliglible.
Widening the Salt River Canal would reduce the flood levels for all scenarios, but that this would come
at a significant cost vilh very little benefit and is unlikely to be in the foreseeable future. The main conclusion of this study is that the proposed development would have an insignificant effec on flooding in the vicinity of the existing River Club site. Although the development would have some impacts in terms of increased hazard and damage to propertles are insignificant and can be considered hegligible - as long as the above findings are appropriately deall with.

Although the proposed development might not appear to have a significant impact on frooding, it would none the less require the following deviations in terms of the City's 'Floodplain and River Corido
Management Policy' (CSRM, 2009a): Management Policy' (CSRM, 2009a):

- Permission to develop / obstruct the free flow of water within the 20 -year flood line area would need
- Permission to
to be granted.
Section 10.5: Tab
- The current assessment framework forbids development (including filling) within the 50 year fload be considered, provided equivalent compensatory stage storage volume is provided within the

As the proposed development falls under the 50 -year flood line, a deviation from the policy,
allowing the developer to fill (considered development) world need to be granted. With regard to the fwo development layouts (Section 3.2), both would have similar impacts, although Layout Option 1 (focus of this study) would appear to be the preferable option as it aligns with the vision to Layout 2) it provides an improved ecological comidor, provides the potential for improved amenily and biodiversity in tine with the principles of Water Sensitlve Uman Design (WSUD) principles.
 in terms of the policy and based on consideration of the "geomorphological, maintenance, social and should be approved.
Section 9.2: Flood Management and Public Safely
Section 10.5: Table 1: Framework for the assessment of Proposals
sho
AED (African Environmental Development). 2016. Fiood Line Determination For The Sall And Brown, R. \& Magoba, R. 2009. Rivers and Wetlinds of Gape Town. Cape Town. South Afrca: Water Erown. S.A., Schall, J.D., Morris, J.L., Doherty, C.L., Stein, S.M. \& Wamer. J.C. 2013 . Urban Drainage
Design Manual Hydrautic Engineering Circular No. 22, Third Edtlion. Fort Collins, Colorado. Brunner, G. 2016. Benchmarking of the HEC-RAS Two-Dimensional Hycraulic Modeling Capabillties. Brunner, G.W. 2010. River Analysis System HEC-RAS Release Notes, , (January): $1-21$.
 CHI (Compulational Hydraulics intemational), 2017. PCSWMMM Help.
https://support.chivater.com/80006/staus-bar. CSIR. 2005. Guidelines for Human Settlement and Planning: Votumme il. Pretoria, South Africa: Boutek Repor No. BOUIE2001. CSIR Building and Construction Tecchnology.
CSRM. 2003a. Floodplain and River Corricor Management Policy : 19. CSRM. 2009b. Management of urban stormwater impacts policy. : 15.
Fisher-Jeffes, LL. 2015. The viabifty of rainw water and stormwater harvesting in the residential areas of Ftetcher, T.D.. Deletic. A., Mitchell, V.G. \& Hati, B.E. 2008. Reuse of urban runoff in australia: A

Glermek. M. 2015. Anayssing peak flaw atienuation in an urban welland.
Giermek, M.G. 2015. ANALYSING PEAK FLOW ATIENUTION IN AN URBAN WETLAND.

Rivers Urban Park (TRUP) specialist study on Modelling of Flood Alligation Options on the Satt
River.
IPCC. 2014 a . Chapler 8-Uiban Areas. In C. Field. V. Barros, D. Dokken, K. Mach, M. Mastrandrea, Maccracken, P. Masirandrea, \& L. White, eds. Climate Change 2014. Impacts, Addaptation, and
Vutnerability. Part A: Gobal and Sectora' Aspects. Contribution of Working Group if to the Fith Assessment Report of the intergovemmental Panel on climate Change. Cambridge, United
Kingdom and Nevy York, NY, USA: Cambridge Univessity Press: 113 . nttp:Itipcc-wg2.gov 3 Juiy PCC. 2014b. Summary for policymakers. in C. Field, V. Barros, D. Dokken, K. Mach, M. Mastrandrea, MacCracken. P. Mastrandrea, \& L. White, eds. Climate Change 2014: Impacts, Adiaptation, and
Vulnerabifity Part

Kruger, E. \& Gomes, N. eds. 2007. Drainage Manual. Pretoria: South African National Roads Agency Leopold, L. 1968. Hydrology for urban land planning - effects of urban land use. : 21.
Laurie, L. 1954. Theory of Flow For the Liesbeek River Under FLood Condifons.
Marsidek, J. Karamouz, M. Golderfum, J. \& Chocat, B. 2006 . Urban water cycle processes and
Scientific and Cultural Organization (UNESCO).
Neelz, S. \& Pender, G. 2013. Benchmarking the latest generation of 2D hydraulic modelling packages. Ninhan Stand. 2004. Salt River Catchment: Quantification of Flood RIsk and Evaluation of Amen Aiciontive Measures.
PRDW. 2010. Marine Inputs to Salt River Flood Model. : 94 ,
RH-DHV. 2017. Two Rivers Urban Park Specialist Study: Modelling Of Flood Mitigation Options On
Richard.F. 2016. Lower Liesbeek. geocaching.
Rossman, L. 2008. Storm Water Management Model user's manual, version 5.0. United Stales of
Development, U.S. Environmental Protection Agency.
http://nepis.epa.gov/Exe/ZyPURL.cgiPDockey=P10011XQ.txt io September 2013 .
Shuster, W.D., Bonta, J., Thurston, H., Wamemuende, E. \& Smith, D.R. 2005. Impacts of impervious
surface on watershed hydrology: A review. Urban Wafer Joumal, 2(4): 283-275.
htp://www.tandfonline.com/doilabs/10.1080/15730620500386529 30 May 2014.
SRK. 2012. Stormwater Infrastructure Asset Management Plan (Phase 2A) Rainfall Analysis and TRUP Assoc. 2017. Redevelopment of the River Club, Revised Draft Scoping Report, January 2017.
Wainwright, J. \& Mulligan, M. 2013. Environmental Modelling: Finding Simpllily in Complexity:
Second Edition. J. Wainwright \& M. Mulligan, eds. Chichester, UK: John Wiley \& Sons, Ltd.
hilto:/doi.wiley.com/10.1002/9781118351475. hilp://doi.wiley.com/10.1002/9781118351475.
Walsh, C.J. 2000 . Urban impacts on the ecology of receiving waters: a framework for assessment,
conservation and restoration. Hydrobiologia, 431(2-3); 107-114. conservation and restoration. Hydrobiologia, 431(2-3); 107-114.
van Waveren, R., Groot, S., Scholten, H., van Gear, F., Wosten, J., Koeze, R. \& Mort, J. 1999. Good Management and Waste Waler Treatment.
Whittemore, C. \& Gorgens, A. 2007. Letter to Mr T Dickinson: Options for reducing flood risk. http://www.iolproperty.co.za/roller/news/ontry/observatory_s_river_ciub_remodels.
Wilems, P. Olsson, J. \& Arnbjerg-Nielsen, K. 2012. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems. WWA Publishing.
htp:/foooks.google.com/books? $\mathrm{ld}=\mathrm{vg} \mathrm{CwY}$ JhiSXkC\&pgis=1 3 July 2014.

 -

Table A7 Water Surface Elevations (mamsil) at Point 7 (Natural Ground Lavel $=-0.23$ mamsi)

Thbie AB Wator Surface Elevations (mamat) at Point 8 (Natural Ground Levot $=-0.482$ mamal)

gurccomin

Figure By Comparison of 0.5ywar flood inundation extente [State Cua Us Post Devalopment whth Rher Ctub, TRUP, NRF, PRASA)
currectar

Figure es Comparison of 2 -year flood inundation extents (saturs Cuo Vs Post Davelopment with Pivar Club, TRUP, NRE, and PRASA)

Figure es Comparison of 10 -jear flood Inundaton extents (statw Quo Vs fost Dovelopment whth River Club, IRUP, NRF, and PRASA)
ausecon

Gurecot

aurecon

Aurecon offices are locator in:
Angola, Australia, Botswana, China,
Ghana, Hong Kong, Indonesia, Kenya,
Lesotho, Macau, Mozambique,
Namibia, Now Zealand, Nigeria,
Philippines, Qatar, Shgapore, South Africa,
Swaziland, Tanzania, Thailand, Uganda,
United Arab Emirates, Vietnam.

Joy San Giorgio

Senior Professional Officer, Development Management

RE: COMMENTS ON DAMS CASE 70396369, RIVER CLUB DEVELOPMENT, OBSERVATORY, CAPE TOWN

Several motivation reports have been uploaded to the DAMS system with the most recent one being an application for permission to hold a New Year's Eve party on Dec 31, 2018. This response addresses the Motivation Report Rev 4, Sep 2018, called Application for Deviation from Table Bay District Plan etc.

Furthermore, our comments are informed by the Aurecon report into flooding of the site, Rev 3, dated March 2018 while the report uploaded to DAMS is Rev 2 dated Nov 2017.
The earliest flooding report commissioned by the River Club in 2015 and undertaken by AED. laments the historical mistakes made by City fathers in allowing development of the foreshore and infilling of the salt river lagoon. This as part of an application to develop the last bit of open green land left in the system.

CCT Siormwaier Bylaw and Policies

The CCT Bylaw relating to Stormwater management allows the City to prohibit or impose conditions on developments in areas adjacent to watercourses and wetlands.
The CCT Stormwater Policies attempt to give guidance on how and when such conditions should be imposed. The Floodplain and river corridor management policy aims to safeguard aquatic environments and human health in addition to reducing the impact of flooding and maintaining recreational water bodies. It requires balanced consideration of flood risks, environmental impacts and socio economic needs with one of the policy objectives being the protection and enhancement of environmental goods and services provided by water bodies. The policy considers water bodies to be public resources which need protection by, amongst others, offsetting riparian development. The policy explicitly states that no development rights will be granted in the high hazard zone.
The Stormwater Impacts Policy aims to mitigates changes to runoff characteristics brought about by development

[^5]Making progress possible. Together.

th

Deviations Requested

The CSRM branch is largely satisfied with the work done and findings made by Aurecon in their report of their "Investigation into the impact of the proposed development of the River Club on flooding and flood abatement in the Salt river catchment" Rev 3 dated 12 March 2018. These are not disputed.
The Stormwater policies prohibit the exercising of development rights in the High Hazard zone and also does not permit housing or business development below the 1:50 year floodline. It is not clear why the application is for deviation from restrictions on development below the 1:20 year floodline.
It is beyond the authority of the branch to authorize the manipulation of ground levels aimed at changing floodlines below the 1:50 year flood line. Furthermore, while in-filling of the "old Liesbeek" has been shown to be hydraulically unimportant, it goes against the other aspects of the City's stormwater strategies and policies as discussed above. While it may have a limited effect, the "old Liesbeek" currently acts as polishing facility for stormwater coming from the suburb Observatory.
In addition to the applicant wishing to obtain approval for a departure from the flood related aspects of the Floodplain and River Cornidor Management Policy, the developers are in essence also requesting a departure from the need to provide a buffer along the river section (which is proposed to be infilled to create a stormwater swale). A departure from the ecological principles and guidance provided in the latter policy needs to be taken in the context of the wider system and catchment. It needs to be acknowledged that the area that will be infilled represents part of the last remains of the historic Liesbeek River channel which has ecological and eco-historical importance.
There a few opportunities to undertake rehabilitation of degraded rivers in the Cape Town and developers generally seldom actively pursue such positive initiatives. Endorsing the River Club proposals that would essentially result in further degradation of this historic channel should not be supported
In its current form, the historic river channel shouid be buffered by at least 40 m lin terms of the City's 2002 buffer line spatial informants recommended by Southern Waters). A more recent study undertaken for the entire TRUP site (Blue Science freshwater assessment dated 2016) provides a more accurate assessment of the present status and ecological importance and sensitivity of the watercourses in the TRUP area (which included the watercourses and wetlands of the River Club site). This report recommends at least a 35 m buffer along/around these systems (page 62: A buffer area of approximately 35 m should be maintained adjacent to the delineated edge of the aquatic features"). The report made use of the 2015 WRC buffer tool which is regarded to be an acceptable industry standard and thus the 35 m buffer which is of similar order of magnitude to the City's earlier 2002 data would be supported by the City's Catchment, Stormwater and River Management Branch.

The branch would not oppose the manipulation of the 1:50 year floodline when other mitigation measures such as raised floor levels and escape routes are taken and when a spatial development framework is also presented for approval. This would enable a more specific discussion of the location and extent of deviations requested. There are places where the models show a small increase in possible flood levels. The applicant should get the
approval of the affected property owners and/or indemnify the City against claims in this regard. The flooding report should discuss errors and assumptions made and their effect on results in more detail. Practical interventions to prevent flooding of the astronomical observatory and of Liesbeek parkway must be undertaken.
The location of the site is such that on-site generated post development stormwater detention will most likely be counterproductive and this branch supports doing away with the "Control quantity and rate of runoff" requirements of the Management of Urban Stormwater Impacts Policy. The water quality improvement aspects of the policy must still be met.

It has been already pointed out in the City's comments on the draft BAR for this development that the River Club site and nearby sites such as the Raapenburg wetlands, the Observatory, the river corridors themselves etc represent an integrated complex of open space areas with high green infrastructure value. Not only does the area offer value in terms of social/recreational benefits and ecological / biodiversity features, but also represents green infrastructure important for flood, water quality and water provision management. The site should not be viewed alone but within the context of the greater Salt Catchment $\left(213 \mathrm{~km}^{2}\right)$ which, apart from the upper reaches of the Elsieskraal, the extreme upper reaches of the Liesbeek River and the broader TRUP area (and River Club), has already been intensively developed and hardened. These last open space remnants therefore have even greater value. Indeed, Section D of the draft Basic Assessment Report (Need and Desirability) notes that in terms of the City's EMF, the site is listed as a "structuring open space which forms part of the coast to coast greenway". In the Table Bay Spatial Development Plan the site is classified as Open Space and Buffer 1 and thus the proposed development represents a major departure from this. The proposed development will require that the area which is currently zoned "Special Open Space" be rezoned, and thus development of the River Club site will irrevocably change and reduce the green infrastructure and open space value of the area as a whole.

The proposed infilling and conversion of the river channel to a stormwater swale will alter the green infrastructure engineering and ecological value of this site. The Environmental Management Department of the City will also point out that the biota in this system (Western Leopard Toad - confirmed breeding site), fish (indigenous Galaxias zebratus likely to thrive in this system), frogs and avifauna will be displaced due to the complete loss of habitat in this section.

It seems to be very risky for the City to grant blanket deviations from policy without knowing exactly what development is proposed where and the CSRM branch would be more comfortable discussing relaxation of policy requirements in terms of development plans.

Head: Catchment, Stormwater \& River Management

WATER \& SANITATION HEAD OFFICE
8 VOORTREKKER ROAD CNR OF MIKE PIENAAR BOULEVARD, BELLVILLE 7535 PRIVATE BAG X98, BELLVLLIE, 7535
www.capetown.gov.za/thinkwater
Making progress possible. Together.

Appendix G2:

Biodiversity Impact Assessment

EXECUTIVE SUMMARY
E1 Introduction
This report summarises the findings of the specialist biodiversity assessment of the environmental
impacts likely to
EXECUTIVE SUMMARY
E1 Introduction
This report summarises the findings of the specialist biodiversity assessment of the environmental
impact ikiy to
Proposed redevelopment of the River Club, Observatory:
tal impact Assessment Report: Biodiversity - aquatic ecosyst
Specialist Environmental impact Assessment Report: Biodiversity- aquatic ecosystems, flora and fauna impacts likely to be associated with the proposed re-development of the River Club, Observatory, by integrates the findings of a number of specialists, wheen compiled by Freshwater Consulting $c c$, and (where relevant) into the Environmental Impact Assessment component the baseline studies and ull specialist reports are provided in appendices to this report, noting that the specialist aqu ecology report is provided as the main body of the report, into which additional biodiversity provided input into this document: provided input into this document:

- Dr Liz Day (freshwater ecologist - rivers and wetlands (Freshwater Consulting cc);
Mr Marius Burger (faunal specialist);
Mr Barrie Low (botanical specialist - COASTEC);
Dr Tony Williams (avifaunal specialist);
Mr Leon Groenewald (groundwater speci
(1 s. would require substantial components of these findings to be reconsidered. Key assumption include:
The City of Cape Town would be amenable to the changes proposed to the function and
management of the natural channel of the Liesbeek River on City land, as part of Alternative management of the natural channel of the Liesbeek River on City land, as part of Alternative 2.
The natural channei abuts the River Club site boundary but does not in fact lie within the site; The findings of the hydrological study, particularly with regard to the impact of the proposed infill on flooding of the adjacent Raapenberg wetlands, are accurate;
The development of either alternative, if approved, would be in accordance with the full detailed
description of the development as outlined in this report, unless altered by explicit biodion description of the development as outlined in this report, unless altered by explicit biodiversity
mitigation. No items would be excluded from the development, without confirmation from the biodioversity team that they were immaterial to the development outcomes / impacts; The additional recommendations included in the report, and intended to improve certa the proposed development would be able to achieve its untended ecological benefits, would also
be conditions of Authoristion E3 Affected natural systems E3.1 Overview
The River Club site lies in the Salt River catchment (quaternary catchment G22C). The site is highly is edged along its eastern and south eastern boundary by the Liesbeekenous terrestrial vegetation. It River Club and South African Astronomical Obseryatory (SAAQ) sites, and separates the site along its south eastern boundary from the Raapenberg Wetlands - an important wetland conservation area The site is bounded to the south by a relatively smail parcel of land that in intended in the future to by an earth-lined channel referred to in this Square Kilometre Array (SKA) programme; to the west which lies on land owned by the City of Cape Town, betwe natural channel of the Liesbeek River, which lies on land owned by the City of Cape Town, between Liesbeek Parkway and the River Club between the River Club boundary and an area of open space exteriding as far extension, which lies of the natural. Liesbeek River channel. The Black River forms the southern boundary of the site,

MAIN ENVIRONMENTAL CONSULTANT SRK Consulting

CLIENT:
Liesbeek Leisure Prop
Liesbeek Leisure Properties Trust
Proposed redevelopment of the River Club, Observatory:

Assessment of potential biodiversity impacts Incorporating the findings of the aquatic ecosystems (rivers and wetlands), botanical, faunal, avifaunal and groundwater

December 2019

Prepared by Liz Day (PhD; Pr Nat Sci) Freshwater Consulting cc liz@freshwaterconsulting.co.za
Location of The River Club, Observatory. Site
Condition
All of the rivers and their associated riparian wetlinds that pass along the site boundaries were Present Ecological State (PES) (or condition) ratings:
The Black River: PES Category F, indicative of a system that has undergone Extreme changes from its natural condition, being affected by (amongst others) channelization, long-term inflows of treated and (at times untreated) sewage effluent, major changes in flow regime
from a seasonal to a perennial system, nutrient enrichment, largescale loss of indigenous vegetation and invasion by alien aquatic plants;
The western channel (natural Liesbeek channel): PES Category E , indicative of a system that has undergone a Serious change from its natural conditions, with changes in natural river morphology being major contributors to this poor condition
rating, along with water quality impacts from urban and suburban landuse, changes in natural flow regime (upstream river flows have been largely diverted away), extensive loss of indigenous vegetation and invasion of the river channel by alien plants. The channel and its vegetated margins are however used by several species of waterfowl, while Giant Kingfishers nest in sections where the bank is vertical. Endemic Cape Galaxias fish occur in the river upstream and may possibly also occur

[^6]PES Category F, indicative of a canalised system that has lost almost all natural tream function;

Raapenberg wetlands:
o These include seasonal clay flats renosterveld wetland, with nine endemic or nearendemic wetland plant species being associated with them within the adjacent SAAO site alone.

Water quality assessments and mapping of wetland vegetation indicated that these wetlands are at times highly saline and comprise a mosaic of wetland plant
communities, the distribution of which is driven by subtle changes in water depth as well as by salinity.
The Raapenberg we

The Raapenberg wetlands have also been rated as of importance from an avifaunal breeding habitat to endangered Western Leopard Toads; \circ PES: Category C;
Artificial golf course ponds

A number of seasonally to perennially inundated ponds have been created on the golf course, These artificial water features may provide suitable breeding sites for western Leopard Toads Sensitivity

The key biodiversity sensitivities of the River Club and its immediate natural surroundings can be
summarised as:
The Raapenberg wetlands - these wetlands include important remnant seasonal clay flats vulnerable to impacts such as increased hydroperiod / prolonged or more frequent wetting; The SAAO site includes important Threatened terrestrial renosterveld vegetation (Peninsula Shale Renosterveld) including several endemic and/or red data species;
 western leopard toads - maintenance of habitat quality for indigenous fauna requires
maintenance of seasonal flow regimes and inundation patterns, which in turn affect salinity

- Increased flood velocity, frequency, duration, or magnitude (depth);
- Channelisation / drainage of water from the wetlands;
- Diversion of (particularly fresh) water into the wetlands;

Removal of existing berms / other structures that have "accidentally" protected the
wetlands from hydrological and/or water quality impacts
 - The Liesbeek Canal is not sensitive as a riverine habitat in its current form;

The natural channel of the Liesbeek River is disconnected from the Liesbeek River and now functions as a backwater wetland - it does however provide habitat to important bird species and may provide breeding areas to western leopard toads;
Connectivity across the site, especially from the Raapenberg
channel and east-west across the site is important for wetland fauna - in particular western leopard toads;

Provision of adequate safe, vegetated terrestrial habitat for western leopard toads during
their non-breeding season is critically important for the sustainability of this species on and near the site.

The terrestrial areas of the site were described as highly disturbed by all specialists, and rated as of no importance from a botanical or avifaunal perspective, although the botanical study indicated that
 —

Proposed redevelopment of the River Club, Observatory: Specialist Environmental Impact Assessment Report: Biodiversity - aquatic ecosystems, flora and faun

rehabilitated by bringing fill of a shale nature onto the site, with local quarry areas beig suggested as habitat and year-round occupancy habitat must be maintained, i.e. barriers must be limited. Connectivity must be maintained between the Raapenberg Wetlands and the river regions to the west, including the area of the former Liesbeek flow which must either be rehabilitated as an accessible high quality wetland habitat
or converted into high quality terrestrial habitat with some pools/ponds that would retain water into the summer and could be used as. WLT breeding grounds. One broad (>65 m wide) east/west belt must be established in the northern reaches of the property, and additional minor ($>10 \mathrm{~m}$ wide) east/west The proposed development
of these developments should be accessed in the main alternative were assessed. The full details infilling of the existing 1:100 year Liesbeek and Black River floodlines, to create a building platform. The development alternatives comprise:
Alternative 1 (preferred alternative): This entails rehabilitation of the canal into a more
natural, un-lined channel, and the infilling of the natural channel to create a landscaped open space and stormwater swale system;

- Alternative 2: This allows for retention of the canal, with minor landscaping and softening of its edges, and the protection and rehabilitation of the natural channel into an (albeit
disconnected and rendered unnatural but still functional) wetland The key features of both alternatives that are of importance from a biodiv
which were designed largely in discussion with the biodiversity team) comprise inclusion of: (and Ecological corridors, including:
A wide (ranging from 65 m at its narrowest to 100 m wide at its widest point eastcorridor (to the east) west). This corridor has been designed in terms of both development alternatives
 of high quality terrestrial habitat during non-breeding periods for the western
leopard toad. The open space of the ecological corridor would also allow for flood
 landscaped public space on the site
A minimum 10 m wide corridor along
 minimum 10 m wide corridor between the toe of Berkley Road extension and the building edge - access to the site would be from this new road;
 natural Lesbeek channel and Berkiey Road; A corridor along the western edge of the sit
A corridor along the western edge of the site - this area, which presently includes
the natural Liesbeek channel, is however treated differently in the two alternatives
 all roads abutting ecological corridors / rehabilitated areas were designed actively to prevent The development platf
The development platform - this was designed also to minimise accessibility by small fauna
and WLTs in particular;

E5 Key hydrological and geohydrological findings
Crucial findings of other specialist studies that informed the present assessment included:
- The fact that, despite their close proximity to the Liesbeek canal and the Black
geohydrological study found that the Raapenberg Wetlands are mainly groundwater-fed, with flow from the two rivers towards the wetlands being minor (and likely to be confined to flood Page
corridors must also be created along the northern and southern site boundaries.
Limiting the extent of hazardous features and high-risk areas: Toad exclusion barriers must be erected to prevent/limit toad access to high-risk zones such as
roads, large unvegetated areas and various pitfall structures.
The Freshwater Consulting Group Page iv

With regard to non-avian fauna, the faunal study found:

- 29 indigenous mammal species might occur on the site - their conservation status ranks are all listed as being of Least Concern (LC), with only one species (Afritan Clawless Otter) with a global (IUCN) and regional listing of Near Threatened (NT);
- A total of 32 indigenous reptile species may occur on the River Club grounds - again, the conservation status of these reptiles are almost all listed as being of LC, except for the Cape recorded on the grounds of the adjacent South African Astronomical Observatory, and might possibly also occur within the River Club grounds;
- A total of eight indigenous amphibian species may potentially occur on the River Club
grounds and immediate surroundings. The conservation status of these amphibians are (WLT) which is Endangered (EN). The faunal specialist noted that although the presence of an endangered species on the site does not trigger a fatal flaw response in respect of the considerations to adequately accommodate this species here. The WLT represents the most significant faunal concern in respect of the proposed River Club development
- The only known WLT breeding sites in the region of the River Club are the wetlands of the Raapenberg Bird Sanctuary / Raapenberg Wetlands and about 1.5 km southeast in the Oude Molen area;
this specific area appears to be somewhat disjunct and seemingly completely separated from breeding populations further south on the
Cape Peninsula; Cape Peninsula;
- The following fou

Availability of suitable breeding hal for the viability of any WLT population: Availability of suitable breeding habitat: In this case, the conservation and
management of the Raapenberg Wetlands are of outmost importance; Availability of habitat to provide shelter and food (forage): Enough natural or
semi-natural habitat must be available within at habitats to sustain WLT individuals for the non-breeding period (i.e. about 10 months of the year). Such sectors must provide the adequate shelter and
foraging requirements to sustain the WITs until the next breeding foraging requirements to sustain the WLTs until the next breeding season. Thus to the Raapenberg Wetlands and along the rivers and also within an dispersal corridors;

Aval

```
                                \square
```

 \(\circ\)
 \(\circ\)
 - Th known wit bre

he Raapenberg Wetlands and along the rivers and also within an dispersal
,

Proposed redevelopment of the Rlver Club, Observatory:
Specialist Environmental Impact Assessment Report: Biodiversity - aquatic ecosys
and are separated from these wetlands by the Liesbeek Canal, which acts as an hydraulic "buffer" between the River Club and the Raapenberg wetlands. There thus appears to be no connection appears shallow groundwater on the River Club site and that on the Rapapenberg wetland site ircumstances; The specialist hydrological study (Aurecon 2017) findings that:

Alternative 1: For the 0.5 -year and 1 -year recurrence interval storm events, only slight increases (1 to 2 cm) if any, and in some cases decreases (1 to 2 cm) in water level in the
Black and Liesbeek Rivers would occur, with decreases in flood level as a result of Black and Liesbeek Rivers would occur, with decreases in flood level as a result of
increased capacity in the rehabilitated Liesbeek canal. These findings are important because (at least prior to the ill-considered opening up of a connectings. are important, wetland from the Liesbeek Canal, the wetland is assumed to be hydrologically connected to the Liesbeek Canal at a surface elevation of 2.5 m amsl, equating to a recurrence a nesligible effect on the hydrological repime of the Raper club site would thus exert considered a threat in this regard. This compares with the 125 mm lowering of the level of inflows and outflows into the wetland as a result of the linking channel, which is likely to exert a significant negative effect on wetland function;

- Alternative 2: Flood changes would also be negligible, although the decrease in flood E6 Impact assessment findings

Important Note:
During the course
During the course of FCG's involvement in this project, the proposed development footprint and the
layouts of both development alternatives underwent a number of
 design team. This process resulted in issues such as the avoidance of (ecologically) sensitive areas, the incorporation of ecological setback areas and faunal movement corridors in accordance with
biodiversity specialist requirements and the strategic selection of opportunities that would enhance ecosystem function, quality or sustainability, while affording various development opportunities. To some extent, then, the development alternatives considered in this study already include a
substantial level of mitigation, and the significance of the impacts considered in this section tend to be positive, or low to medium even without mitigation, despite the scale of development proposed. Table E1 summarises the assessment of biodiversity impacts associated with the proposed
development. development.

Positive impacts would be associated with improved connectivity between the Raapenberg Wetlands
and the site (e.g. as a result of canal rehabilitation) as well as the active establishment of indigenously vegetated open space corridors and riverine buffer areas. of indigenously vegetated open space corridors and riverine buffer areas.
The only impacts that were considered High (negative) were those associat

The only impacts that were considered High (negative) were those associated with potential fatalities
to WLTs. Prior to additional mitigation, both Alternatives carried risk in this regard - in the case of Alternative 1 this revolved around increased access by toads to Liesbeek Parkway, while Alternative 2 does not include barriers to toad movements onto the development parkway, while Alternative corridors and open space areas. These potential impacts are however readily mitigable to Low,
through design interventions.

Proposed redevelopment of the River Club, observatory:
Specialist Environmental Impact Assessment Report: Biodiversity - -aquatic ecosysis

Proposed redevelopment of the River Club, observatory:
Specialist Environmental Impact Assessment Report: Blodiversity - aquatic ecosyst

Proposed redevelopment of the River Club, Observatory: Specialist Environmental Impact Assessment Report: Blodiversity - aquatic ecosystems, flora and fauna					
Nature of impact		Consequence	Probability	Signif.	Confid.
Both Alternatives With Mitigation		Very Low	Probable	Very Low (Neg.)	Medium
12. Disturbance of watercourse bed and banks during infrastructure installation					
Both Alternatives Without Mitigation		Low	Probable	Very Low (Neg.)	Medium
Both Alternatives With Mitigation		Very Low	Probable	Very Low (Neg.)	Medium
OPERATIONAL PHASE					
13. Degradation of habitat quality or failure to realise opportunities for improved habitat quality and space maintenance activities biodiversity conservation / improvement as a result of inadequate or ill-advised channel and open					
Both Alternatives Without Mitigation		Medium	Probable	Medium (Neg.)	Medium
Both Alternatives With Mitigation		Low to Very Low	Possible	Insignificant to Very low (Neg.)	Medium
14. Contribution to deterioration of water quality in the Llesbeek and Black Rivers					
Both Alternatives Without Mlitigation		Medium	Probable	Medium (Neg.)	Medium
Both Alternatives With Mitigation		Low	Probable	$\begin{aligned} & \text { Low } \\ & \text { (Neg.) } \end{aligned}$	Medium
Table E2 summarises changes in the ecological condition of the aquatic ecosystems on and abutting the site, these being the only natural habitats identified of any ecological significance. The table assumes full implementation of the stated designs and their required mitigation measures, as well as implementation of additional requirements listed in the report that are intended to improve confidence that the development alternatives would inpractice achieve their anticipated outcomes. Table E2 Summary of anticipated changes in aquatic ecosystem condition assuming full implementation of mitigation measures					
System	Condition				
	Alternative 1	Alternative 2		Current state / No development alternative	
Llesbeek River Canal	c	F		F	
Natural channel of the Liesbeek River	Non-existent	0		E	
Raapenberg wetland	c	c		c	

Proposed redevelopment of the River Club, Observatory:

Specialist Environmental Impact Assessment Report: Blodiversity - aquatic ecosystems, flora and fauna

E5 Cumaltive development impacts
The following impacts were identifilid as of concern:

- Increasing development in the broader TRUP area resulting in loss of open space areas, and thus
affecting mainky non-breeding habitat availability for WLTs;
- Increased traffic in the vicinity of the site, resulting in increased wLT mortalities (e.g. at the
Observatory Road crossing to Liesbeek Lake from the site).
Impacts associated with the no-development alternative
If neither development alternative was approved and the status quo remained:
- The Liesbeek Canal would remain in situ - but would be likely to require repair in the near
future;
The (natural) Liesbeek channel would remain in situ, and would continue to convey
stormwater into the Black River. Ongoing gemoval of fliein vegetation (e.g. water hyacinth)
would be required, but the channel might provide breeding habitat to western leopard
toasds;
- The terrestrial open spaces of the River Club would remain undeveloped and potentially
available as non-breeding habitat for western leapard toads - however, ongoing activies
associated with the driving range would continue to hamper the ecological wellbeing of
this species as would physical barriers to migration such as the Liesbeek Canal.
- The main neegative impatct associated with the no-development alternative would be the lost
opportunity to rehabilitate the Liesbeek Canal. Without development funding, it is
extremely unlikely that this bold approach would ever be affordable.

Summary and Conclusions

E8.1 Discussion of alternatives
In the case of the River Club, both terrestrial and natural ecosystems are considered degraded, variously, diversion, channelization, fragmentation and canalisation. Terrestrial ecosystems have been assessed by the faunal, avifaunal and botanical specialists as highly altered and affording very low levels of habitat quality. No indigenous flora of any concern was found on the site, although and Raapenberg wetlands. These communities were not however considered likely to be affected by development of the River Club site.

Despite the level of infilling that would be associated with development of the site, the adjacent Raapenberg wetlands were shown by the hydrological assessment of Aurecon (2017a) to be unlikely to be impacted by changes in llood height, frequency or duration.
of the two development alternatives assessed in this study, both
ecological perspective, and preferabable to the no-devels the key concerns potentially associated with development of the River club site, namely:

The potential risks of development to the resilience of important indigenous fauna - in this case, populations of endangered western leopard toads occurring on and adjacent to the
site, and requiring safe migration routes through the site as well as access to both breeding and non-breeding habitats;

- The need to improve ecosystem resilience through rehabilitation and /or remediation
activities aimed at improving terrestrial and aquatic (river and wetland) habitat quality.

Both development alternatives have furthermore addressed, through a long period of iterative design by the project team as a whole, issues such as ecoiogical connectivity through the site, and both provide terrestrial habitat for western leopard toads, while including structural devices (toad species as well as other fauna on the site, which would be expected in theory to be positively affected by the proposed landscape rehabilitation and remediation activities.

Of the two alternatives, from an ecological perspective, there would however be a very clear preference for selection of Alternative 1. This alternative hinges on the rehabilitation of the currently canalised reaches of the lower Liesbeek River, and the planned creation of an unlined vegetated channel, that has sufficient space to function as a natural river within a broad connecting riverine corridor, to establish adequate longitudinal and lateral linkages into natural areas of the site
and the adjacent Raapenberg wetlands, and which would significantly improve faunal connectivity and toad migration routes across the site. implementation of this alternative would, from a biodiversity and general aquatic ecosystems perspective, be a positive impact, and its implementation is recommended.

This positive outcome has not however been rated as of high significance - this reflects the acknowledged risks of implementation, as well as the impacts to any sensitive natural ecosystems
that would be associated with a development of the scale of the that would be associated with a development of the scale of the proposed River Club development.
Against rehabilitation of the canal is also set the infilling and landscaping of the remnant (but historically fragmented and highly altered / /diverted) "natural" channel of the Liesbeek River. This loss is considered ecologically acceptable in the context of substantial river rehabilitation, and the proposed development of vegetated swales in landscaped terrestrial areas suitable for colonisation by western leopard toads in their non-breeding season is considered an acceptable use of this space without significant negative biodiversity or other ecological costs. Alternative 2 would nevertheless provide adequate mitigation against development-associated Selection of this alternative would however, in this author's opinion, result in a significant biodiversity opportunity cost that could not be realised in the future once development had occurred. A similar opportunity cost applies to the No Development alternative - without significant
development funding, it is extremely unlikely that rehabilitation of the canal would E8.2 Approach to increasing certainty of anticipated outcomes E8.2 Approach to increasing certainty of anticipated outcomes

One of the problems in compiling this assessment was, ironically, the degree to which the
development layouts had already considered ecological impacts, and addressed and incorporated these in layout and design. While the resultant layouts are thus largely acceptable in their current form, two problems are presented with this approach:

1. Without medium or high negative significance being attached to particular layouts, it is improve the final outcomes - this weakens the mitigation requirements;
2. If a layout is approved, there is a risk that some of the essential original mitigation thinking and approaches could be "lost", as it is not explicitly listed as mitigation.

- Including requirements for additional control measures (provided in the main body of the report) and aimed at improving uncertainty over the projected outcomes measures to be
included in a potential development authorisation; included in a potential development authorisation;
- Incluaing requirements for the development descriptions included in this report to be considered part of the approved design; and
Including requirements for the authorised (if any) layo
plan with writen
plan with written dimensions and ecological specifications, to be used as an auditab, annotated going forward.

Proposed redevelopment of the River club, Observatory:

Proposed redevelopment of the River Club, Observatory:
Specialist Environmental Impact Assessment Report: Biodiversity -aquatic ecosystems, flora and fauna
TABLE OF CONTENTS
TABLE OF CONTENTS
Executive Summary
Table of Contents
Declaration of Independence and Expertise in the Field of Study
Table of Contents
Introduction
$\begin{array}{ll}\text { 1.1. } & \text { Background } \\ \text { 1.2. } & \text { Overall terms of reference }\end{array}$ $\begin{array}{ll}\text { 1.2.1. } & \text { Overall terms of reference } \\ \text { 1.2.2. } & \text { Scope of additional studies }\end{array}$ 1.3. Site Location
$\begin{array}{ll}\text { 1.4. } & \text { Report Informants } \\ \text { 1.5. } & \text { Limitations and assum }\end{array}$
1.5. Limitations and assumptions
1.6. Definitions
2 Assessment methodologies
Assessment methodologies
2.1. Assesment of river and wetland condition
Assessment of sensitivity and
Wetland identification and delineation

3 Natural ecosystems in and associated with the study area
3.1. Aquatic ecosystems

Overview of water quality
Aquatic ecosystems condition
Ecological importance and sensitivity
Existing rehabilitation activities along the
3.1.6. Existing rehabilitation activities along the Black and Liesbeek Rivers
3.1.7. \quad Detailed description of aquatic ecosystems on and associated with the site
3.1.8. Watercourse ciassification
3.2. Terrestrial vegetation
3.3. Fauna on and in the vicinity of the River Club site
3.2. Terrestrial vegetation
3.3. Fauna on and in the vicinity of the River Club site
Fish
Birds
3.3.2. Biras
3.3.3. Mammals
3.3.4. Reptiles
3.3.5. Amphibians
3.4. Summary of key ecological sensitivities
3.5. Rehabilitation opportunities
3.5.1. Opportunities for renosterveld rehabilitation on the River Club site:
3.5.2. Opportunities for faunal conservation / habitat rehabilitation on the site
3.5.3. Opportunities for general river and wetland rehabilitation
3.6. Opportunities to improve amenity value and public access
3.3.2. Biras
3.3.3. Mammals
3.3.4. Reptiles
3.3.5. Amphibians
3.4. Summary of key ecological sensitivities
3.5. Rehabilitation opportunities
3.5.1. Opportunities for renosterveld rehabilitation on the River Club site:
3.5.2. Opportunities for faunal conservation / habitat rehabilitation on the site
3.5.3. Opportunities for general river and wetland rehabilitation
3.6. Opportunities to improve amenity value and public access
3.3.2. Biras
3.3.3. Mammals
3.3.4. Reptiles
3.3.5. Amphibians
3.4. Summary of key ecological sensitivities
3.5. Rehabilitation opportunities
3.5.1. Opportunities for renosterveld rehabilitation on the River Club site:
3.5.2. Opportunities for faunal conservation / habitat rehabilitation on the site
3.5.3. Opportunities for general river and wetland rehabilitation
3.6. Opportunities to improve amenity value and public access
3.3.2. Biras
3.3.3. Mammals
3.3.4. Reptiles
3.3.5. Amphibians
3.4. Summary of key ecological sensitivities
3.5. Rehabilitation opportunities
3.5.1. Opportunities for renosterveld rehabilitation on the River Club site:
3.5.2. Opportunities for faunal conservation / habitat rehabilitation on the site
3.5.3. Opportunities for general river and wetland rehabilitation
3.6. Opportunities to improve amenity value and public access
MMM M N
3.1 .1
3.1.
3.1.
3.1.
3.1.
3.1
3.1
I Development proposals for the River CLub
4.1. Development overview
4.2. \quad Development alternatives
4.2.1. Development alternative 1
4.2.2. \quad Development alternative 2

Specialist Environmental Impact Assessment Report: Blodiversity - aquatic ecosystems, flora and fauna

1.2.1. Overall terms of reference for the inputs into this report

FCG's input into this project had the following overall terms of reference, namely to:

- Describe the existing baseline characteristics of the study area and place this in a regional
Describe opportunities and constraints for the redevelopment of the site,
- Identify and assess potential impacts of the Project and the alternatives, including impacts associated with the construction and operation phases, using SRK's preseribed impact rating methodology;
Indicate the
Indicate the acceptability of alternatives and recommend a preferred alternative (if
applicable);
to proposed and existing dever cumulative impacts of the proposed development in relation to proposed and existing developments in the surrounding area; Recommend mitigation measures to avoid and/or minimise impacts and/or optimise
benefits associated with the proposed project; and
Recommend and draft a monitoring campaign, if applicable.

1.2. Overall terms of reference

The original findings of the above specialists are presented in Appendices A - D, with the exception 2017a).

1
More specifically, FCG in conjunction with SRK refined these terms of reference as follows, requiring
the specialist to:

- Undertake a desktop study and site survey in order to characterise and delineate wetlands,
pans and aquatic ecosystems at and surrounding the Site and assess their function, present ecological state and recommended ecological category
Describe wetland dependent fauna and flora species present;
Map wetlands in terms of their ecological sensitivity and functional value;
Comment on sensitivity in terms of ecologically important habitats, ecological corridors and linkages with other ecological systems on and adjacent to the site;
Include the findings of the botanical, faunal, avifaunal and groundwater
Include the findings of the botanical, faunal, avifaunal and groundwater specialists;
Assess the significance of the potential direct and indirect impacts of the redevelopm
freshwater freshwater ecosystems;
Identify and describe po
Identify and describe potential cumulative freshwater ecology impacts resulting from the
redevelopment in relation Recommend mitigation measures to minimise impacts and enhance benefits associated with
the redevelopment; the redevelopment;
- Address comments by stakeholders relating to freshwater ecology impacts; and
- Identify applicable legislation and/or license/permit applications that may be required in
terms of aquatic ecosystems. terms of aquatic ecosystems.
Following input from Stakeholders into the Scoping Phase of this project, FCG was also asked to
provide input into the control of the invasive alien weed Purple loose-strife (Lythrum salicaria). 1.2.2. Scope of additional studies
Note that the detailed Terms of Reference and Approach to the various studies outlines below are
presented in the studies themselves (see Appendices A - D).
- Faunal study
o Conduct a faunal screening study of three vertebrate groups, i.e. mammals, reptiles and amphibians and comment on their conservation importance, habitat - requirements, development sensitivity, and links with adjacent systems.
- Confirm that the River Club site has no indigenous botanical value; adjacent (SAAO) site; prepare a list of species found on the site and establish which
Red List species (Moraea aristata and others) occur here; Red List species (Moraea aristata and others) occur here;
- Provide an annotated map of this indigenous vegetation and its proximity to the River Club devironment;
Assess potential
Assess potential impacts, if any, on this vegetation based upon impacts articulated in the Biophysical Report. Impacts would include potential loss of species (notably
Geohydrological study
$0 \quad$ Based on detaile
Based on detailed survey information for the site and adjacent watercourses as well
as publically available; desktop information, describe local groundwater hydrology at the site and in adjacent freshwater systems;
Comment on the degree to which the Raapenberg wetlands are fed by the water
table versus floodflows; and

Proposed redevelopment of the River Club, Observatory: Impact Assessment Report: Biodiversity - aquatic ecosy

1.4. Report Informants
This report has been informed by the following inputs and/or activities:
This report has been informed by the following inputs and/or activities:

- An intitial site visit on 29 June 2015 , accompanied by Dr Tony Williams (avifaunal specialist), constraints were workshopped;
Multiple subsequent site visits for watercourse assessment between June 2015 and
November 2017;
November 2017;
Assessment of the
Assessment of the Raapenberg wetlands in September 2017, accompanied by the project
hydrologist (Dr Lloyd Fisher-Jeffes, Aurecon and the survey team (Biff Lewis Geomatics)
during which time:
Transects through wetland systems were surveyed, with wetiand plant community types being linked to topography and / or depth of inundation;
- Existing impacts to wetland function were noted and (where possible) mapped (e.g. trenches conveying flows from the Liesbeek River canal into the Raapenberg
wetiands);
Consideration of existing ecological information pertaining to the site, and internal FCG photographs and reports obtained during previous projects carried out in the broader area; Perusal of the City of Cape Town's wetland prioritisation data (Snaddion and Day 2009);
Assessment of historical aerial imagery for the site;
Assessment of bacteriological data obtained from the City of Cape Town for sites on the Black Overlay of the City of Cape Town's (2017) wetland delineation data onto GOOGLE imagery Consideration of the aquatic and botanical specialist findings of the Two Rivers Urban Park (TRUP) project with regard to this site;
Discussions with local residents with particular interest in the site - Mrs Jean Ramsey in particular provided photographs and commentary on past flood events and the occurrence
of western leopard toads on and in the vicinity of the site; of western leopard toads on and in the vicinity of the site;
Numerous iterative discussions with the project team as a
specialists regarding appropriate mechanisms / layout approaches to address concerns regarding the impacts of the proposed development on aquatic ecosystems and general floral biodiversity on and in the vicinity of the site;
Incorporation of the relevant findings of the various biodiversity specialists (section 1.1) into
a single assessment report: a single assessment report;
Compilation of the present

1.5. Limitations and assumptions

would require substantial comper a important aassumptions that, if unfounded,

- The City of Cape Town would be amenabie to the changes proposed to the function and management of the natural channel of the Liesbeek River on City land, as part of Alternative 2. The natural channel abuts the River Club site boundary but does not in fact lie within the site; The findings of the hydrological study, particularly with regard to the impact of the proposed infill on flooding of the adjacent Raapenberg wetlands, are accurate;

[^7] Burger) have confirmed that their findings rema
Confirmation of this is supplied in Appendix G.
River and wetland condition were assessed using the desk-top Present Ecological State (PES) method ogy, adapted rom DWAF (1999). The methodology is based on the rated current attributes of the river or welland, which are scored against those of a desired baseline or reference condition, resulting in the assignment of a wetland to one of six PES categories, as defined in DWAF (1999) and
described in Table 2.1. The methodology is applicable to natural systems only.
\[

$$
\begin{array}{|l|l|c|l|}
\hline \text { PES Score } & \text { Wetland Description } & \begin{array}{l}
\text { PES } \\
\text { Category }
\end{array} & \text { Comment } \\
\hline>4 & \text { Unmodified or approximates natural condition } & \text { A } & \begin{array}{l}
\text { Acceptable } \\
\text { Condition }
\end{array} \\
\hline>3<=4 & \begin{array}{l}
\text { Largely natural with few modifications, minor loss } \\
\text { of habitat }
\end{array} & \text { B } & \\
\hline>2<=3 & \text { Moderately modified with some loss of habitat } & \text { C } \\
\hline=2 & \begin{array}{l}
\text { Largely modified with loss of habitat and wetland } \\
\text { functions }
\end{array} & \text { D } & \\
\hline>0<2 & \begin{array}{l}
\text { Seriously modified with extensive loss of habitat } \\
\text { and wetland function. }
\end{array} & \text { E } & \begin{array}{l}
\text { Unacceptable } \\
\text { Condition }
\end{array} \\
\hline 0 & \begin{array}{l}
\text { Critically modified. Losses of habitat and function } \\
\text { are almost total, and the wetland has been modified } \\
\text { completely. }
\end{array} & \text { F } & \\
\hline
\end{array}
$$
\]

2.2. Assessment of sensitivity and conservation importance of rivers and wetlands

A number of protocols exist for the assessment of river and wetland conservation importance and condition, with different protocols having been developed for particular wetland types and conditions, as well as to allow measurement of particular aspects of wetland function, structure or their value to the management of human socio-economic structures or activities. The assessment protocols selected have all been developed in South Africa and are currently being used in wetland assessment here. They aim to provide a measure of either or both the present condition, vaiue and / or conservation-worthiness of the wetlands in question.
This report utilised the Ecological Importance and Sensitivity (EIS) methodology developed by DWAF (1999b and c) to derive EIS ratings for wetlands and rivers. DWAF (1999b) defines the ecological importance of a river or wetland as an expression of its importance to the maintenance of ecological diversity and functioning on local and wider scales, while ecological sensitivity (or fragility) refers to
the system's ability to resist disturbance and its capability to the system's ability to resist disturbance and its capability to recover from disturbance once it has
occurred (resilience). Both abiotic and biotic components of the system are taken into consideration occurred (resilience). Both abiotic and biotic components of the system are taken into consideration in the assessment of ecological importance and sensitivity.
importantly, it should be noted that ElS ratings are strongly biased towards the potential importance and sensitivity of particular system as would be expected under unimpaired conditions. This means that the present ecological state or condition (PES) is generally not considered in determining the ecological importance and sensitivity per se (OWAF 1999). The following components are considered in an EIS assessment, namely:

```
Page 6
Ver 6: November 2019
The Freshwater Consulting Group
```


Proposed redevelopment of the Rlver Club, Observatory: Impact Assessment Report: Biodlversity - aquatic ecos

- The presence of rare and endangered species, unique species (i.e. endemic or isolated populations) and communities, intolerant species and species diversity should be taken into account for both the instream and riparian components of the river;
Habitat diversity;

Biodiversity in its general form;

The importance of the particular wetland, river or stretch of river in providing connectivity between different sections of the river;

- The presence of conservation or relatively natural areas along the river section; and
The sensitivity (or fragility) of the system and its resilience (i.e. the ability to recover following
disturbance) to environmental changes.
The above biotic and abiotic determinants are scored using the table presented in Appendix E, and the median score is calculated to derive the ecological importance and sensitivity category. These categories are defined in Table 2.2

Ecological	Ecological importance and sensitivity categories (Table after DwAF 1999)
Very high	Quaternaries/delineations that are considered to be unique on a national or even international level based on unique biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These ecosystems (in terms of biota and habitat) are usually very sensitive to flow modifications and have no or only a small capacity for use.
High	Quaternaries/delineations that are considered to be unique on a national scale due to biodiversity (habitat diversitv, species diversity, unique species, rare and endangered species). These rivers (in terms of biota and habitat) may be sensitive to flow modifications but in some cases, may have a substantial capacity for use.
Moderate	Quaternaries/delineations that are considered to be unique on a provincial or local scale due to biodiversity (habitat diversity, species diversity, unique species, rare and endangered species). These rivers (in terms of biata and habitat) are usually not very sensitive to flow modifications and often have a substantial capacity for use.
Low/marginal	Quaternaries/delineations that are not unique at any scale. These wetlands (in terms of biota and habitat) are generally not very sensitive to flow modifications.

2.3. Conservation importance
$\begin{aligned} & \text { Proposed redevelopment of the River Club, Observatory: } \\ & \text { Specialist Environmental Impact Assessment Report: Biodiversity - aquatic ecosystems, flora and fauna }\end{aligned}$
In this study, the approach adopted by Ewart-Smith and Ractliffe (2002) was used. This approach
uses a range of criteria to identify conservation importance categories for different wetlands. The
criteria are indicated in Table 2.3.
Criteria used to assign low, moderate or high conservation importance to wetlands identified in ciated with the current study area. The highest category applicable to any wetland,
based on any one criteria, is the one accorded the wetland as a whole.
Table after Ewart-Smith and Ratliff Table after Ewart-Smith and Ractliffe (2002).

Proposed redevelopment of the River Club, Observatory:

2.5. Raapenberg wetland survey
The Raapenberg wetland was identified early on in this study as the most sensitive aquatic ecosystem
in the vicinity of the proposed development, and potentially vulnerable to even slight changes in
flood regime. initially, the hydrological team was asked to use existing flow data to model such
changes. However, the data were deemed too coarse and unreliable to provide answers at the high
level of confidence required. Instead, the aquatic ecologist (this author), the hydrologist (Dr Lloyd
Fisher-leffes) and a team of surveyors surveved the height of a number of selected points along three
cross-sections that were walked through the wetlands. Points were selected on the basis of
vegetation type, with the purpose of correlating vegetation type / zoning with particular heights.
The known habitat preferences in terms of inundation and drought periods was used to deduce the
current hydrological regime. Plants that had known salinity preferences were also noted, and
deductions about current wetland function were made on this basis. Water level in low points the
wetland was also surveyed, as well as water level in the adjacent Black and Liesbeek Rivers, and
water samples were collected from the Raapenberg Wetland and the Black River, and analysed for
various parameters including electrical conductivity. The latter was measured in situ while ather
variables were measured at the Uls laboratory in Johannesburg.
The hydrological specialist used the annotated topographical data from the survey to make
inferences as to the current and likely future recurrence interval and depth of flooding in the
wetlands, and the movement of flow into and out of the wetlands (Aurecon 2017a).
The geohydrological specialist (Appendix C) also referred to these data in his assessment of the likely
influence of groundwater on wetland function.

$\frac{6 \text { LOZ }}{6 \text { 2aquanon: } 9 \text { fan }}$

Low conservation importance:

- does not provide ecologically or functionally significant wetland habitat, because of extremely small
size or degree of degradation, and/or
- of extremely limited importance as a corridor between systerns that are themselves of low conservation importance.
Moderate conservation importance:
- provides ecologically significa
- provides ecologically significant wetland habitat (e.g. locally important wetland habitat types),
and/or
- fulfils some wetland functional roles within the catchment, and/or acts as a corridor for fauna and/or flora between other wetlands or ecologically important habitat types, and/or
supports for is - supports (or is likely to support) fauna or flora that are characteristic of the region and/or provides a degraded but threatened habitat type (e.g. seasonal wetlands), and/or is a degraded but threatened habitat type le.g. seasonal wetlan
is degraded but has a high potential for rehabilitation, and/or
functions as a buffer area between terrestrial systems and
- functions as a buffer area between terrestrial systems and more ecologically important wetland
systems, and/or
- is upstream of systems that are of high conservation importance.
Hish conservation importance:
- functions as a buffer area between terrestrial systems and more ecologically important wetland
systems, and/or
- is upstream of systems that are of high conservation importance.
Hish conservation importance:
- supports a high diversity of indigenous wetland species, and/or
- supports a high diversity of indigenous wetland species, and/or
- supports, or is likely to support, red data species; supports
communities, and/or to suppor, red data species; supports relatively undisturbed wetland
forms an integral part of the habitat mosaic within a landscape, and/or
is representative of a regionaliy threatened / restricted habitat type, and/or
has a high functional importance (e.g. nutrient filtration; flood attenuation) in
- has a high functional importance (e.g. nutrient filtration; flood attenuation) in the catchment, and/or
- is of a significant size (and therefore provide significant wetland habitat, albeit degraded or of low
diversity).

[^8]DWAF (2005) notes that wetlands must have one or more of the following attributes to classify as such:
i. Saturated soils within the top 50 cm of soil surface;
ii. Wetland (hydromorphicl soils that display characteristics resulting from prolonged
saturation;
ii. The presence, at least occasionally, of water loving plants (hydrophytes.
iii. The presence, at least occasionally, of water loving plants (hydrophytes.
These criteria were used as the basis on which to identify wetland areas on the site, using a hand-
held auger to allow soil hydromorphic features to be identified.
In practice, the extent of infill on the site meant
In practice, the extent of infill on the site meant that augering to identify soil hydromorphic features
was rendered irrelevant in these areas.

Figure 3.2
River Club sile in the context of the Western Cape Biodiversity Spatial Plan of Stanvliet et al (2017)
3.1.3. Context in terms of the National Freshwater Ecosystems Priority Area (NFEPA) proiect
3.1.3. Context in terms of the National Freshwater Ecosystems Priority Area (NFEPA) project
The Liesbeek River as a whole is classified as a Fish Support Area or Fish Corridor (FEPA The Liesbeek River as a whole is classified as a Fish Support Area or Fish Corridor (FEPACODE 2) in
the (2011) NFEPA database. Two threatened dataset, namely Cape Kurper (Sandeliia copensis) and Gataxias molius spocies are listed in this
 its limited distribution).
See Section 3.3 .1 for a discussion of the likely presence of these species in the river reaches abutting
the current study area.
${ }^{2}$ Note that the area referred to in this
Bird Sanctuary
The freshwater Consulting Group Ver 6: November 2019

3 NATURAL ECOSYSTEMS IN AND ASSOCIATED WITH THE STUDY AREA
This section describes aquatic and other habitats of biodiversity significance on and immediately adjacent to the River Club site itself. It includes excerpts and summaries from the other specialist reports listed in Section 1.1. The full specialist reports should however be referred to for more details, as well as for the assumptions and limitations of their assessments.

3.1. Aquatic ecosystems
3.1.1. Catchment context

The River Club site lies in the Salt River catchment, in the Department of Water and Sanitation's (DWS) Berg-Olifants Water Management Area (WMA), in quaternary catchment G22C.

The site is bounded by two of the major river systems in this catchment, namely the Liesbeek River and the Black River (Day and Clark 2012). Of these, the Liesbeek River comprises two channels - an unlined channel along the western and northern site boundaries, now disconnected from the main river channel upstream (referred to in this report as the natural channel of the Liesbeek River), and the mainly canalised portion of the current main stem of the river, that passes along the southern and south eastern site boundaries (referred to in this report as the Liesbeek Canal). The Black River forms the eastern site boundary (see Figure 3.1). Both "channels" of the Liesbeek River pass into the Black River along the River Club site boundary. The Black River passes under a railway bridge immediately downstream of the site, and is canalised shortly thereafter.

The River Club and its environs in the context of rivers and wetiands, as shown in the City of Cape
Town's (2017) worle Town's (2017) wetland layers (green polygons indicate wetlands) and passes into the Atlantic Ocean in Tabeek River, the system is referred to as the Salt River Canal, and passes into the Atlantic Ocean in Table Bay, some 2.2 km downstream of the Salt River bridge.

Proposed redevelopment of the River Club, Observatory:
 Specialist Environmental Impact Assessment Report: Biodiversity - aquatic ecosystems, flora and fauna

3.1.4. Overview of historical changes in river function and alignment
Historically, the Black River and its tributaries other than the Liesbeek River were probably seasonal, draining into the former mudflats and wetlands of the Black River estuary at Paarden Eiland (Day are described in Brown and Magoba (2009), who also describe the Diep and Salt Rivers. These Liesbeek River as splitting into two "arms" or channels, one of which flowed directly into the Black River and the other into the Sait River Lagoon, some distance downstream. The Diep, Salt and Black Rivers appear to have flowed at least at times into this lagoon as well.

Extensive urbanization of the catchment, canalisation, wetland drainage and industrial development
of Paarden Eiland have effectively led to the come of Paarden Eiland have effectively led to the complete separation of the Diep River from the Salt
River system and canalisation of the latter effectively constrains any natural tidal flushing of the river bed and severely alters the ecological functioning of the river;
The Black River itself has also undergone significant changes from its natural function and alignment. Brown and Magoba (2009) describe it as a seasonal system that rose in the sand dunes of the Cape Flats. It was associated with extensive wetlands in the area just east of the Observatory - remnants
of these include the Raapenberg wetlands (see Section 3.1 .8 (D)\} as well as the Vincent Paltit Valkenberg wetlands \{Turpie 1994). However, construction of Settlers Way and its intersection with the Black River Parkway required the natural course of the river to be shifted some 100 m west, and the wetlands on the eastern side to be infilied (Brown and Magoba 2009). Work by FCG along the Black River in the broad vicinity of the present study area has highlighted the presence of deep organic soils in some of the M5 road reserves and highway off-ramp clover-leaf areas. The presence of these organic soils, beneath layers of rubble and other fill, supports the idea that the river in these reaches once comprised broad wetland flats.
The Black River has also undergone substantial changes in flow regime, and it is now a perennial system, owing much of its volume to effluent from the Athlone and Borchard's Quarry Waste Water Treatment Works WWTWs) as well as stormwater inflows. In sumimer, virtually all of the flows in the river now comprise sewage effluent and stormwater runoff from the surrounding areas, including Not surprisingly, the high levels of nutrient enrichment in the Black River, coupled
slow flowing, deep water have resulted in a proliferation of various exotic aquatic plants in the river These include parrot's feather (Myriophyllum aquaticum) and water hyacinth (Eichhornia crassipes) although patches of indigenous pondweed (Potamogeton pectinatus) also occur in places in the river channel. Annual mechanical removal of litter and aquatic plants by the City of Cape Town, mainly to reduce the risk of flooding in the wet season, perpetuates the steep river banks within these reaches (Day 2013). Large-scale efforts to remove water hyacinth using manual and mechanical labour have uninfested over the past two years. uninfested over the past two years.
The Liesbeek River is one of the majo
The Listbeek niver one of the major tributaries of the Black River. It rises as a number of seasonal Botanical Gardens and Rhodes Memorial. As the streams Table Mountain, between Kirstenbosch flow through progressively more urbanized areas. Most of the lower reathill reaches, they downstream of Kirstenbosch are channelized and/or canalised (i.e. a mixture of concrete and earth

Proposed redevelopment of the River club, Observatory: Specialist Environmental Impact Assessment Report: Biodiversity ~ aquatic ecosyst

canals), at least as far as the N2 crossing, just upstream of the present site. Between the N 2 and the
 unlined channel, but is diverted again into a concrete canal immediately downstream of Observatory
Road, and flows along the River Club boundary.
Aurecon (2017a) provides a series of historical photographs detailing changes in river course in the lower Liesbeek River since the turn of the $20^{\text {th }}$ Century, and make the point that the present rive channel and canal have both undergone changes from their natural alignment / linkages. Drawing to this study:

- Extensive canalisation of the Liesbeek River itself took place between 1942 and 1962, largely as a response to flooding of rapidly urbanising areas, which encroached into the river
- The "Liesbeek Lake" area of the river (just upstream of Observatory Road and the current site - Figure 3.1) was created in 1943, as part of a (never-realised) scheme to construct a along its margins, to widen it, and which saw the river diverted into a series of borrow pits along its margins, to widen it, and the infilling of riparian wetland areas with spoil;
The channelized (but not canalised) western arm of the Liesbeek River is likely to follow at into the Salt River orinal course of the "arm" of the Liesbeek River that once flowed directly Black River - this re-alignment occurred circa 1942;
- The above westerly channel (termed the "natural channel of the Liesbeek River" in this report) remains a feature between Liesbeek Parkway and the River Club, but is now physically cut off from the main river channel upstream by Observatory Road. Although a pipeline under Observatory Road is understood to provide a limited level of connection with have been blocked for several years, and it is assumed that most of the flows in the channel now comprise stormwater runoff and intercepted subsurface seepage, while the main river flows pass along the canalised eastern portion.

3.2.5. Overview of water quality

Poor water quality in the Black River is generally considered to be the most significant problem affecting the river in these reaches from an ecological perspective. A study by the City of Cape Town Day and Clark 2012) showed that water quality in the Black River downstream of the N2 bridge was ләлем ләллл цэ! and total ammonia, and low oxygen concentrations were found toncentrations of orthophosphate water quality. Blue Science (2016) corroborated these findings.
Water quality in the Liesbeek River, by contrast, tends to be considerably less impacted than in the Black River, receiving runoff from a catchment dominated by well-serviced residential and commercial areas, with no sewage works feeding into the system. The river is thus polluted to a seeped from gardens in residential contaminants being runoff from parking areas and nutrients seeped from gardens in residential areas. The river was rated in the above study as a Category D in

Proposed redevelopment of the River Club, Observatory:
 Proposea redevelopment of the River Club, Observatory:

Proposed redevelopment of the River Club, Observatory:

Since 2010, bacterial contamination has reduced substantially in the Black River, attributed both to the refurbishment of the Athlone WWTW and to the more recent and ongoing construction Periodic spikes in contamination did howe backyard dwellers, in the catchment in the Langa area; NRO7, and appear to indicate recurrent sewage overflows / leaks in the reaches represented by sewage overflows / leaks in the Maitland catchment; to reflect point-source inputs in the river reaches also showed periodic spikes - again assumed likely sewer overflows or pump station failures. It is however assumed that point, and most water from the Liesbeek River to some extent diluted such bacterial contamination; Despite improved water quaity post 2010, Escherichia coli data rentamination; Black River - and several orders of 2010, Escherichia coli data remained at high levels in the 4000 counts per 100 ml considered "Unacceptable" for intermediate contact recreation purposes, as cited by Day and Clark (2012); Even in the Liesbeek River, although bacteri
River, bacterial levels in the dataset shown in Figure 3.4 C were frequently higher the Black maximum thresholds for intermediate recreation. Elevated bacterial counts occurred mainly during the winter months, and are assumed to reflect both periodic sewage leaks or mainly as well as surface wash-off of terrestrial areas contaminated with dog sewage leaks or overflows relatively large numbers of homeless people inhabiting and using the river corridor faeces and the site;
With the
in bacterial contamination generally occurred "peaks" described above, some improvement downstream of the Raapenberg Bridge, as far as the Salt River Bridge (monitoring point $N R 0$) immediately downstream of the River Club site. This is attributed to two fanitoring point NR09)
natural recovery in water quality with distance downstream of a source of contam.
-E. coli bacteria, for example, die off rapidly when exposed to suulight and
the dilution effect of inflows from the Liesbeek River, which enters the Black River

between NRO7 and NROG;

 short range between minimum and maximum readings (Figure 3.4A);in the Liesbeek River (site NRO8) which had generally low levels, as shown by the low median and
"spikes" shate 2010, bacterial contamination in the Black River was characterised by multiple contamination from large spills / loads moving from the watercourse, with some reflecting point source inflows - spikes at NR07 that do not echo upstream spikes are likely to reflect contaminated point source inflows - a stormwater eipeline upstream spikes are likely to reflect this site, discharging stormwater from the Maitland area (Ms Candice Haskins, City of Cape town, pers. comm. to Liz Day);
Escherichia coli bacteriological data were sourced from the City of Cape Town by FCG for sites NR06 and NR07 (upstream of the Liesbeek River and downstream of the Elsieskraal Canal, the Vygekraal Canal and NRO9 on the Back River downstream of all of the above inflows. These data have been summarised in Figures $3.3 \mathrm{~A}-\mathrm{C}$ and
indicate that: indicate that: Canal and the Athlone WWTW inflows) NROS on the Liester Canal and - Bacterio - Up until late 2010, bacterial and maximum readings (Figure 3.4A);
"spikes" showing high bacterial concentrations along the watercourse, with som by mutio
The Freshwater Consulting Group

Specialist Environmental Impact redevelopment of the River Club, Observatory:

> (see Figure 3.3 for locations) between 2006 and 2017. A: All sate in the Black / Liesbeek Rivers the full period. C: Only sites NRO8 and NR09 post 2012

Specialist Environmental Impact Assessment Report: Blodiversity - aquatic ecosystems, flora and fauna

A. Escherichia coll

Specialist Environmental Impact Assessment Report: Biodiversity - aquatic ecosystems, flora and fauna
3.1.6. Aquatic ecosystems condition
Day (2013) provided an update of the Southern Waters (2001) assessment of condition or Present Ecological State (PES) of bath the Liesbeek and the Black Rivers in their reaches in the vicinity of the River Club, using the approach described in Section 1.9. The following PES categories were accorded to the rivers:

The Black River; PES Category F, indicative of a system that has undergone Extreme changes from its natural condition;

- Western channel past the site (natural Liesbeek channel): PES Category E, indicative of a system that has undergone a Serious change from its natural conditions, with rating, along with water quality, changes in natural flow rons to this poor condition indigenous vegetation and invasion of the river channel by alien plants, including

canal): PES Category F, indicative of a canalised system that has lost almost all natural stream function.
These categories are still applicable

Blue Science (2016) assessed Instream and Riparian Habitat Integrity (another measure of condition) with compatible results, showing Instream Habitat in the Black and Liesbeek Rivers (natural channel) to be in a Category D/E and E respectively, but with Riparian Habitat Integrity in a Category F for both systems, indicating a near complete loss / alteration in indigenous riparian vegetation.River and
wetland importance The Black River

The Black River has importance as one of the largest and most visible rivers of Cape Town. Its ecological importance is currently low, given the extent of its degradation, but its rehabilitation potential is high - if water quality issues were addressed through better servicing and management of upstream developments, water quality would probably improve rapidly, and in this context,
rehabilitation of the steep-sided river banks and sedimented beds would d e readily achien not to natural conditions. Its current importance rests however on its role in stormwater and effluent conveyance, and its provision of habitat to some birds.

The Liesbeek River

Despite the significant levels of change from its natural condition, and the plethora of management Holems (aiien invasives, litter, water quality, abstraction of flows, canalisation) that afflict the Town, the river ist upstream of the present study area, in the context of other urban rivers in Cape in its uncanalised reaches and, downstream of the N 2 crossing in its rehabilitation potential, at least in its uncanalised reaches and, downstream of the N 2 crossing, in its reaches where riverine wetlands
remain, including the Raapenberg wetlands.
${ }^{3}$ Note that this assessment was not included in Day (2013) and was

$\begin{aligned} & \text { Proposed redsevelopment of the River Club, Observatory: }\end{aligned}$ Specialist Emvironmental Impact Assessment Report: Blodiversity - aquatic ecosy

Specialist Emvironmental Impact Assessment Report: Blodiversity - aquatic ecosystems, flora and fauna
The Raapenberg wetlands
These remnant riverine wetlands are considered of high importance in an urban context, where many of the floodplain and riparian wetlands once associated with foothill and lowland rivers have been lost to urbanisation, and the Raapenberg wetlands in particular are recognised as an important breeding site for many duck species. Using the criteria outlined in Table 2.3, the Raapenberg Wetlands would be rated as of High conservation importance, on the basis that the wetlands:

Support a high diversity of indigenous wetland species, and

- form an integral part of the habitat mosaic within a landscape, and
- Aare representative of a regionally threatened / restricted habitat type, and
- Are of a significant size (for an urban environment) (and therefore provide significant
wetland habitat, albeit degraded or of low diversity).

The above wetlands are described in more detail in Section 3.1 .8 (D).
3.1.7. Ecological importance and sensitivity

The Liesbeek Canai has an EIS of Low;

- The Raapenberg wetlands have an EIS of High.

It should be noted that the above EIS ratings have been somewhat artificieily applied to the lower reaches of the Liesbeek River likely to be affected by the proposed develapment. Blue Science \{2016\} assessed an extended section of the lower Liesbeek River including both canalised and uncanalised
reaches and accorded the river as a whole an EIS of Moderate to High and the Black River an EIS of reaches and accorded the river as a whole an EIS of Moderate to High and the Black River an EIS of
Moderate to Low.
3.1.8. Existing rehabilitation activities along the Black and Liesbeek Rivers

Consideration of the implications of the proposed River Club upgrade need to take into account existing rehabilitation and management initiatives along the rivers and wetlands in these areas. The following initiatives / interventions are understood to focus at least in part on the Black and
Liesbeek Rivers and their associated wetlands: - The City of Cair Town's anded wetlands:

The City of Cape Town's alien clearing teams, who remove litter and alien aquatic vegetation (mainly water hyacinth - Eichhornia crassipes) from the Black River, using an integrated approach of mechanical and manual labour;

- The Friends of the Liesbeek River, who participate (and largely drive) litter removal and alien clearing along both rivers, and particularly the Liesbeek River - removal of the alien weed Purple loose-strife (Lythrum salicaria) is particularly challenging (Box 3.1 provides
background information and clearing recommendations for this species); The Friends of the Liesbeek River who intervened in the channelized Lies;
downstream of the N2 bridge by breaching thed in the channelized Liesbeek River just downstream of the N 2 bridge by breaching the berm and allowing peak flood flows to The Freshwater Consulting Group Page 18

Proposed redevelopment of the River Club, Observatory:

Specialist Environmental Impact Assessment Report: Biodiversity - aquatic ecosystems, flora and fauna
dissipate into the adjacent floodplains immediately downstream of the N2 (in the vicinity of
Valkenberg Manor House) and further downstream, Into the Raapenberg Wetlands [Note
that the ecological implications of the latter are discussed in Section 3.1.8 D: Racpenberg
Wetiands].
In addition, the Raapenberg Bird Sanctuary forms part of the Two Rivers Urban Park (TRUP). This
wetland is located between the Liesbeek Canal and the Black River, and lies immediately south east
of the River Club.

عune! pue eioly 'swaysisoje minenbe - גұ!

Proposed redevelopment of the River Club, Observatory:

22 29ed
5 TOZ Jaquanon :9 」an

以上

Buproy

наня N 040 CH

Proposed redevelopment of the River Club, Observatory:
Environmental Impact Assessment: Blodiversity

Detailed description of aquatic ecosystems on and associated with the River Club site

erview
The River Club site itself is a highly disturbed environment, with most of the aquatic ecosystems assumed to have been associated with this area under natural conditions (i.e. extensive floodplain wetlands set around and within the broad lowland river channels of the Black and Liesbeek Rivers) having been diverted, re-aligned, canalised, infilled or drained. Outside of the three channei systems described in Section 3.2 (the Black, the western (natural) Liesbeek channel and the mainly canalised, eastern Liesbeek River canal, and the (artificial, isolated) golf course ponds, no wetiand ecosystems remain on the site today.

Hydrology
Berms along the western and eastern channels of the Liesbeek River cut off at least low leve! floods from what would have been their natural floodplains - these floodplains have however been largely infilled on the site itself, although wetland areas do still exist in places along the 5left hand river bank of the natural river channel. Figure 3.5 shows the extent of inundation of the site and its surrounds in different flood conditions, illustrating that the only portions of the site that lie above the 1:50 year floodline are the infilled north eastern portion of the site, and various artificial berms. Large portions
of the site lie within the 1:5 and even 1:2 year floodplains.

Figure 3.5
Data provided by SRK Consulting. Berms along the Lesbeek canal and natural channel not shown - they
were constructed after this survey was completed (L. Fisher-Jeffes, Aurecon, pers. comm. to Liz Day).

The left hand bank of the channel abuts first Liesbeek Parkway and then, as it swings east and away from the site, the railway line, meaning that the undeveloped portions of the River Club itself are the least developed sides of the river, and also the only sides along which there are real opportunities for
channel / wetland rehabilitation. The channel is steep-sided-to show signs of recent and probably ongoing disturbance, including raising of the right hand bides places, presumably to address flooding of the River Club (see Photos A and Q). Nevertheless, the base

The Freshwater Consulting Group

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Biodiversity

Drawing on the findings of a geotechnical investigation, as well as on water level and Electrical Conductivity (EC) data from test holes on the site and (where available) from adjacent water bodies,
 supporting data in Appendix C, but those most useful in assisting this speciatist in arriving their understanding of the role of groundwater in determining aquatic ecosystem function are summarised
Large areas of the River Club site have been infilled (geotechnical data show depth of bedrock (shale)). Measured groundwater levels on the River are in turn underlain by contact zone between fill and sediments - this reflects the fact that the northern section of the River Club was naturaily part of the Raapenberg wetlands prior to construction of
the Liesbeek Canal; the Liesbeek Canal;
Early summer (Janua
Early summer (January 2015) river water levels were lower than measured groundwater although the geohydrological specialist warns that there may be some influence of a deeper aquifer as a result of drilling into the bedrock. This relationship differed from that
in the Raapenberg wetlands to the east of the canal, where surveyed data (this study) showed river water levels to be some 150 mm higher than wetland water; River EC was considerably lower than borehole ($7.8-16.3 \mathrm{~m}$ below ground) and shailower test hole EC on the River Club site. The latter levels were similar to EC measured by FCG
in the Raapenberg wetlands, which were also found to be substantially higher than in the river at the time of FCG's Raapenberg survey in September 2017. It is expected that if there was regular inflow from the rivers to the wetlands that a much lower EC would have
been recorded at the wetlands: been recorded at the wetlands;
the two rivers towards the wetlands is minor (and likely to be confined to flood events -
this author's interpretation);
The geohydrological study noted also that, on the basis of measured water level, the wetlands by the Liesbeek Canal, which acts as an hydraulic "buffer" between the River Club and the Raapenberg wetlands;
No connection between shallow groundwater on the River Club site and that on the
Raapenberg wetland site appears to exist today, although the systems would have been connected under natural circumstances.

Aquatic ecosystems

This section describes aquatic ecosystems on and abutting the site that are considered potentially
vulnerable to River Club development impacts.
A The "natural" channel of the Liesbeek River past the site
The left hand bank of the channel abuts first Liesbeek Parkway and the as in
as follows:

Proposed redevelopment of the River Club, Observatory:

of the channel supports (patchy) dense stands of Phragmites australis reeds, forming good cover for water fowl and likely to provide nesting habitat for other birds as well.

The open water habitat was densely invaded with mainly alien aquatic plants at the time of the site visits, with Commelina benghalensis being one of the more significant invaders (Photo B). Manual clearing of this plant was being carried out - an approach likely to result in less disturbance to the
adjacent banks than mechanical removal. adjacent banks than mechanical removal.
Along the south eastern site boundary, the

Along the south eastern site boundary, the right hand bank steps steeply up to the infilled former
floodplain that lies just north of the River Club boundary - an area that is now subject to litter, dumping and invasion by weedy and /or alien plants, including kikuyu grass (Pennisetum clandestinum) (Photos C and D).

Mature alien trees line the left hand bank in places, with the main species comprising Manotoka and Sesbania (Photos $E-G$). Although both of these are listed alien species in terms of the National Environmental Management Biodiversity Act (NEMBA) (Act 10 of 2004), they still provide useful sheiter as well as roosting and perching areas for birds (see Appendix C).

In the lower reaches of the channel, the channel is separated from a mixed Phragmites oustralis and
Typho capensis reedbed by the bermed left hand river Club boundary, but is considered an important part of the river / wetland system in these reaches, assumed to comprise a relic of the former more extensive riverine wetlands that wold have occurred in this now highly altered part of the catchment.

- The floodplain environment north of the River Club site is considered of extremely low sensitivity from an ecological perspective, with its only present functions being provision of a buffering derives only from the physical space provided by this area, and not from any quality of habitat it affords;
- The channel itself currently provides a transformed and disturbed aquatic habitat, which would not be sensitive to slight changes in water quality but which could be affected by significant deterioration in habitat quality (e.g. high nutrient concentrations promoting plant
growth and resulting in low oxygen availability, or potential toxins such as unionised ammonia). Such effects would be more significant if these reaches were shown to support indigenous Cape Galaxias fish;
- Although the channel is connected to the Black River and thus eggs and tadpoles would probably be exposed to predation by Carp, Burger (2017) notes that it is at least partially suited as a western leopard toad breeding habitat, and for the purposes of this study it is
assumed that they do indeed currently breed there; assumed that they do indeed currently breed there;

The adjacent reedbed wetlands would be potentially sensitive to even slight changes in flood height, if these resulted in extended deep inundation of wading areas (unlikely) or even
periodic inundation of reedbed nesting areas, as a result of elevated flood heights; Averiadic fauna in the channel and reedbed areas as result of elevated flood heights; disturbance of the site - but discussions with Dr Williams (see Appendix D) suggested that for the most part birds would adjust to increased human proximity, provided that vegetated shelters and habitat quality remained unchanged.

B The mainly canalised eastern channel of the Liesbeek River

This channel conveys most if not all of the flows from the Liesbeek River. It is canalised on both sides
in its reaches immediately downstream of Observatory Road (Photos $M-P$ and R), and is only unlined

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Blodiversity

for the last (approximately) 200m of its length upstream of its confluence with the Black River. Within the canalised section, habitat diversity is low, and the canal provides a generally sterile aquatic ecosystem, unlikely to support a high diversity of flora and fauna, despite the relatively good water habitat quality, both the availability of space on both sides of the canal (at around how to improve reaches) and high costs have prevented their rehabilitation to date. In places, the existing its upper
 Further downstream, the canal gives way to vegetated, albeit still steep banks, lined with Phot autralis reeds (right hand bank) and mixed reeds and (mainly alien) trees along the left hand bank. The left bank (abutting the River Club) has also been bermed along most of its length, presumably to
reduce its flood potential.

On the right hand side of the channel, a low berm, in places lined with metal sheeting, occurs between the channel and the adjacent Raapenberg Wetlands. At the time of the September 2017 Raapenberg survey, this berm had been breached and a shallow trench excavated, apparently to allow elevated
river flows into the Raapenberg wetlands. This issue is discussed in more detail in Section D, below The Raapenberg Wet/ands.

Thereafter, the berm extends along the whole right hand river bank as far as the Black River. The berm is vegetated with weedy and/or alien vegetation (e.g. Brazilian Pepper trees (Schinus (Commelina benghalensis)), and these give way on the other (Tropaeolum sp.), wandering jew australis reedbed, interspersed with stands of equally dense alien ginger lilies (Heydichium sp. ?) The Raapenberg wetlands and the Black River reedbeds that lie south of the river are accessible non-flying fauna from these river reaches only downstream of where the berm has been breached, where access up the steep, densely vegetated bank and berm is possible.

- The canalised portion of the river would have low sensitivity to any activities on the River Club

The short, uncanalised sections of the river in these reaches, which curre quality of riverine habitat, could be sensitive to development-related activities along its margins, in terms of noise and physical disturbance;

Avian fauna in the reedbed wetlands are unlikely to be affected by development of the River to the M5 highway and its associated noise;

Hydrological connectivity from the canal to the Raapenberg wetland is a critically important issue from a biodiversity perspective and one that, if altered, could potentially result in
significant degradation of wetland function and structure. The Black River

The Black River in its reaches along the site boundary is a degraded environment. The river banks are lined mainly with alien kikuyu grass and other invasive aliens such as cannas, and are bermed in places. use of the floodplain for the creation of wetland habital is a sterile, with little marginal vegetation or of the Liesbeek canal, a small treed isfand has been established in the channel, and both this and the reedbed along the Liesbeek Canal form the focal area for a bird hide, constructed on the edge of the

golfing area. The avian specialist describes the small island 〈referred to as the "palm islet" in his report see Appendix D) as one of only two "patches of habitat currently within the River Club Area that merit preservation", the other being the willow trees along the canal, both of which provide day
roosting habitat to Darters and Cormorants. Sensitivities

The Black River is not considered a sensitive environment, and its degree of ecological impairment means that it presents many opportunities for rehabilitation. Activities that encroached to such a degree that they reduced the quality of habitat between the Liesbeek
Canal, Raapenberg Wetlands and the Black River would however be viewed with concern, and would include (unlikely) extended canalisation, channel lining or the establishment of The Rapenberg wetlond's

Although likely to have extended well north of their present extent prior to excavation of the canal and infilling of wetlands on the site, the off-channel Raapenberg wetlands now occur only south east of the site, and are separated from the site by the Liesbeek Canal. Of all the aquatic ecosystems considered in this assessment, the Raapenberg wetlands are the only ones with significant ecalogical value, and are considered by far the most sensitive to changes in flow, hydroperiod, water quality or fragmentation. They are considered part of the seasonal clay flats renosterveld wetland described in the specialist botanical report on the SAAO site (see Appendix A), the eastern boundary of which extends into the Raapenberg wetlands. The latter report listed that nine endemic or near-endemic wetland plant species within the SAAO site alone - namely Agrostis lachnantha var. lachnantha vinkagrostis, Bolboschoenus maritimus snygras, Cotula coronopifolia ganskos, Lobelia erinus wild lobelia, Pauridia capensis geelsterretjie, Sarcocornia cf. capensis seekoraal (new record), Sparaxis bulbifera fluweelblom, the semi-parasite Thesium funale and Zantedeschia aethiopica arum Ily.

The wetlands are considered brackish to saline systems, with late winter 2017 salinities ranging between 2700 and $2800 \mathrm{~ms} / \mathrm{m}$ in standing water areas north of the bermed pedestrian pathway leading to the Black River pedestrian crossing. This accords with their classification by COASTEC (2017) as shale renosterveld wetlands, with shale usually associated with elevated salt concentrations.

Salinities in the wetlands are generally considerably higher than those in the adjacent Liesbeek Canal and Black River - EC readings made in September and October 2017 respectively in the southern Raapenberg wetland pools and the Black River resulted in the following readings:

The exception to this is the section of wetland (labelled "backwater" in Figure 3.6) that lies immediately south of the bermed access path leading to the M5 and Black River crossings. EC readings in this water body, which also lay at a level compatible with water levels in the Black River at the same time, had an EC of $209 \mathrm{mS} / \mathrm{m}$ in September 2017

SRK (2017) suggests that these results show little linkage between the river and the main body of the wetlands (i.e. north of the bermed pathway), with wetland salinity more closely mirroring roundwater levels (SRK (2017) (Appendix C) cites EC values of 4099, 2985 and $851 \mathrm{mS} / \mathrm{m}$ for is strongly influenced by evapo-concentration, resulting in increasingly elevat salinity in the wetlands waters shrink through evaporation.

Salinity in the "backwater" south of the berm appears to be closely linked to river salinity, and may reflect inflows at the southern (upstream) end of the wetland, which are blocked from entering the Raapenberg wetland by the berm. These salinity levels have relevance for the suitability of different parts of the Raapenberg wetlands as breeding sites for inter alia Western Leopard toads. This issue is discussed in Section 3.3. The backwater wetland, with its lower salinity and deep, standing water pools, supports the least diverse and ecologically important wetland habitat, with water hyacinth (Eicchornia crassipes) growing in the standing water, and dense stands of Phragmites australis edging the open water area, their extent presumably limited by water depth.

Figure 3.5 shows the alignments of the four cross sections surveyed / walked through the site, while Figures 3.5 and 3.6 show plant zonation and elevation through the wetlands as measured in these
Proposed redevelopment of the River Club, Observatory:
Environmental Impact Assessment: Biodiversity

Proposed redevelopment of the River Club, ODservatory:
cross sections during the ecological and hydrological survey. The overall findings of this survey are as
follows:

- The Raapenberg wetlands comprise a mosaic of different wetland habitats, which range from seasonally shallowly inundated and dry out in early summer, or areas that are only periodically seasonally shallowly inundated and dry out in early summer, or areas that are only periodically
inundated in flood events, and potentially remain un-inundated for several years consecutively between flood periods - Photos S-AB illustrate the diversity of dominant vegetation communities and habitat types. Of these, the Sarcocornia capensis salt marsh
habitat is particularly important, with Sarcocornia spp. salt marsh habitat generally very threatened in the Cape Town urban area, with the only significant patches known to this author occurring in the Westlake wetlands, Lake Michelle and the Diep River estuary salt pans; In addition to variation in saturation frequency and duration, there is also considerable variation in the depth of water in different parts of the wetland - at the time of the wetland
survey, water depth ranged from pools with 0.5 m of standing water to areas that had no survey, water depth ranged from pools with 0.5 m of standing water to areas that had no
standing water at all - such heterogeneity contributes to the diversity of faunal species utilising the wetlands at different times, with swimming waterfowl (e.g. Yellow Billed Ducks) utilising deeper standing water while various waders forage in shallow open pans and damp
mud flats; mud flats;
Salinity is
- Salinity is assumed to be a significant driver of habitat heterogeneity and plant community including those closer to the river (Figure 3.7). Since the lower lying areas are within the inundation range for this species, it is assumed that the main control over the spread of P. austrais into the open pan habitats is primarily salinity, with P. australis generally not able to
tolerate as high a salinity as saltmarsh plants such as Sarcocornia capensis which dominates the open pans. The salinity in these pans is assumed to be higher than in higher-lying areas, as the pans are (a) exposed to the more saline water table and (b). are the area where the
effects of evapo-concentration are most likely to be experienced, as water pools in these zones, increasing in salinity as it dries out;
- Areas with standing water in the pans tends to be dominated by Bolboschoenus maritimus this low-growing sedge usually occurs in fresh to brackish water, but requires shallow in the pans that were inundated in September 2017. These plants require shallow inundation - prolonged deep inundation would result in their disappearance from the system. Similariy,
other wetland endemics identified by COASTEC (2017) such as Cotula coronopifolia other wetland endemics identified by COASTEC (2017) such as Cotula coronopifolia occur
along the damp margins of seasonally shallowly inundated, brackish systems. Hydrological reqime and connectivity
A visual assessment of the wetland showed the following significant controls on wetland drainage: A berm that intersects the wetlands from east to west in their southern extent, between the
"backwater" area and the seasonal wetland ponds and pans in the north - this berm is fenced and includes a footpath / cycle track -it appears to act as a control on surface and subsurface flow linkages between the Black River and the Raapenberg wetlands. This might have the effect of increasing wetland salinity in this system over time, if it is not periadically flushed, north of the berm from the water quality and other impacts associated with the Black River; An excavated channel along the boundary line of the SAAO - this appears to have been lying area just south of the canal), and possibly also to drain the lower boundary area of the SAAO.
Proposed redevelopment of the River Club, observatory:
Environmental Impact Assessment: Biodiversity
appears that the hydraulic conductivity of the organic matrix that underlies the wetland is
equal to or lower than the evaporation rate, and thus connectivity under normal flow equal to or lower than the evaporation rate, and thus connectivity under normal flow
This said, the part of the wetland south of the footpath extending from Observatory Road owards the M5 appears to be connected to the river system at some point upstream and also噱 Liesbeek Canal when the water surface elevation is in the region of receive inflows from the the wetland filling in a storm with a recurrence interval of between the $1 / 2$-year and 1 -year; Once water enters the wetlands, and the wetland is filled to +-2.5 mamsl, it becomes an ineffective flow area, offering limited offline storage (Figure 3.7 after Aurecon 2017a);
The wetland does not appear to drain below a level of +-2.5 mamsl (the level at which it the wetland). This would equate to approximately 1 m of standing water at the deepest points estimated at approximately +-1.5 m , with rainfall in the region of 600 mm . This would suggest that over a typical / average year the water levels would fluctuate in the wetland - but that the wetland would not completely dry out. Aurecon (20127a) notes that if there were successive droughts - as in 2015, 2016, 2017-the wetland might dry out should there not be
a storm of sufficient magnitude to result in flooding into the wetland.

Habitat importance

Of the different vegetation types, the open salt marsh pans (Sarcocornia capensis dominated) and the seasonally inundated Bolboschoenus maritimus marshes are probably the most important from a conservation perspective, although the biodiversity importance of the Raapenberg wetlands as a whole really owes itself to the spatial and temporal diversity of habitat types that support a wide range of indigenous and in many cases locally to regionally endemic fauna and flora.
Of particular significance is the importance of the Raapenberg wetlands from
Of particular significance is the importance of the Raapenberg wetlands from the perspective of their
provision of habitat to a high diversity of birds (mainly waterfowl) as well as for the provision or for endangered western ligersity of birds (mainly waterfowl) as well as for the provision of habitat reports in Appendices D and B respectively and further comments in Sestion (see avifaunal and faunal reports in Appendices D and B respectively and further comments in Section 3.3).
Sensitivity
Proposed redevelopment of the River Club, observatory:
Environmental Impact Assessment:

The open sait marsh pans and the shallow seasonally inundated pools and flats of the Raapenberg
wetlands are considered highly sensitive to changes in both hydrology / hydroperiod and salinity (see

Proposed redevelopment of the River Club, Observatory Environmental Impart Assessment: Biodiversity

Box 3.2). Activities that increase the volumes, velocities, frequency or duration of flows into the
 of lower salinity than the existing wetlands, and thus likely to promote the growth of salt intolerant
species such as Phrogmites australis, which would reduce spatial her considerably. considerably.

While it is arguable that the present hydrological regime has been altered from natural, and that change might be restorative rather than impacting, in the absence of hard evidence as to past wetland conditions, and given the known importance and present apparent level of sustainable functioning of the system, it is recommended that no changes in hydroperiod, flow regime or water quality should be encouraged. It is noted in this regard that even slight changes in flow height might have significant implications for plant zonation. Figure 5.6 for example shows the difference of only 12 cm height a similar range in the southern part of the wetland differentiating between inundated shallowess, and a similar range in the southern part of the wetland differentiating between inundated shallow suitable for most waders and likely to accommodate swimming ducks only. Such deep (at that time) too deep for most waders and likely to accommodate swimming ducks only. Such deep pools would, however, This aspect is discussed in more detail in Section 3.3, as the extent of salinity measured in sal areas of
 range suggested by M. Burger (faunal specialist) for western leopard toads. Actual predicted hydrological changes are however described in Section 5.1.7.

The botanical specialist (Coastec 2017 - Appendix A) also stresses the importance of maintaining a seasonal inundation regime, noting that "If inundation of the rare renosterveld wetlands, particularly along the SAAO eastern boundary, becomes more perennial, this would compromise this habitat in a
major way and would also impact on efforts to rehabilitate and even augment this habitat" major way and would also impact on efforts to rehabilitate and even augment this habitat"

A number of seasonally to perennially inundated ponds have been created in the golf course. These artificial water features have been noted by the faunal specialist (Appendix B) as potentially suitable other amphibians. They are however easily replaceable habitats, and little effort has been made in their landscaping / design to replicate natural standing
water habitats in this area. 110. 10
3.1.10. Watercourse classification

An important aspect of this ElA is the legal classification of different aquatic ecosystems likely to be affected by implementation of the proposed project. In the present case, the following classifications
have been made, based on the definitions provided in Section 1.6.

- The Black River-a watercourse (a natural channel, albeitd diverted and impacted, in which water flows regularly or intermittently);
Natural Channel of the Liesbeek River -

Natural channel of the Liesbeek River -the main channel of the Liesbeek River has been
diverted into the canal, and the natural channel (which has aiready been partially diverted from its original alignment), no longer receives flow from the Liesbeek River. Were it not as the DWA (2012) per, this would mean that the channel was not in fact a watercourse, watercourse, which remains functional" is not considered to be a watercourse, whereas

Proposed redevelopment of the River Club, Observatory:
Envirommental Impatt Assessment: Biodiversity
calendula gousblom, Dimorphotheca pluvialis witbotterblom and Ursinia anthemoides margriet;
grasses - Ehrharta calycina rooigras and Hyparrhenia hirta thatch grass;

- Red List terrestrial species occurring on the site are: the peas, Indigofera psoraloldes (Endangered)
and Podalyria sericea (Near Threatened), the bulbs Lachenalia mediana var. mediana viooltjie
(Vulnerable), Babiana fragrans bobbejaantjie (NT), Xia maculata geelkalossie (NT) and Moraea
aristata blou-ooguintjie (Critically Endangered, endemic to SAAO site);
- Given that the renosterveld habitat at the SAAO is severely disturbed, there is a strong likelihood
that species numbers would be far higher under natural conditions;
- In addition, there is a strong likelihood the renosterveld of the site is quite different from that
of Signal Hill (the north-western limit of Peninsula Shale Renosterveid) - the floristic
differences suggest, perhaps, a different (new?) type of Shale Renosterveld vegetation type
on the SAAO site.
Coastec (2017) also discussed the site in terms of three "conservation" areas designated in the
Observatory Landscape Framework (OLF) after Van der Walt and Strong (2010). Given the context of
the present report in assessing the implications of development on the River Club site for terrestrial
ecosystems, and Coastec (2017)'s conclusion that the proposed development at the River Club is
highly unlikely to impact negatively on the dryland renosterveld vegetation at the SAAO site and the
security of the Critically Endangered Moraea aristata is thus likely assured, provided acceptable
conservation measures are introduced on the SAAO site, no further details regarding the treatment of
the different OLF zones are provided here, although these can be sourced in the specialist report in
Appendix A.

Proposed redevelopment of the River Club, Observetory: Environmental Impact Assessment: Biodiversity

3.3. Fauna on and in the vicinity of the River Club site

3.3.1. Fish

The Black River is considered generally poor in indigenous biodiversity, largely as a result of habitat transformation, ongoing maintenance disturbance as a result of dredging of the channel; invasion by alien plants of both aquatic and marginal habitats; and poor water quality. Although no quantitative
data had been sourced at the time that this document understood from popular literature and comments by local resident to occur in the Black River, namely common carp (Cyprinus carpio) and African Cattish (Clarias gariepinus) (Day and Ross-Gillespie 2008). The considerably less-impacted Liesbeek River is believed to support two indigenous fish species, namely Cape Kurper (Sandelia capensis) and Cape Galaxias (Galaxias mollus (Galaxias sp. 'zebratus cf. Mollus') (Garaxias zebratus), a Western Cape endemic fish, as well as a more diverse suite of aquatic macroinvertebrates than those occurring in the Black River (FCG internal data). ${ }^{\text {B }}$ Brown and Magoba (2009) suggest that, under natural conditions, the Liesbeek River may also have supported endemic redfin minnows of the genus Pseudobarbus.

The actual likelihood of any of these endemic fish occurring in the natural channel of the Liesbeek in its reaches past the River Club is however questionable, given both that this channel is largely disconnected from the upstream river and that water backs up into the channel from the polluted Black River, presumably also allowing access by alien fish species from this system.

3.3.2. Birds

The following information regarding birds on and in the vicinity of the River Club site has been summarised from Williams (2015) as presented in full in Appendix D , on the basis of ${ }^{9}$ two site visits and extensive literature research:

- The junction of the Liesbeek and Black River channels is a focal point in the wetland systems of central-north Cape Town. The conjoined Black-Liesbeek River is ecologically linked via Zoar Vlei to the Diep River system that extends northwards to beyond Malmesbury and includes the Rietvlei nature reserve, a registered Internationaily Important Bird Area (IIBA). The only other significant wetlands in this central- northern area of Cape Town are at or near the Century City Intaka Island nature reserve wetlands; a large detention "pond"; and, just east of Century City, the pan between the N 1 and the railway line. The wetland system of southern
Cape Town - based on the False Bay Eco-park (Rondevlei- Seekoevlei-Strandfontein and associated streams) is within ready flight distance for most waterbirds that use the

 cause temporary local flooding. Consequenty the number and diversity of waterbirids seen during the two (weet season) yists

Ver 6 : November 2019

\qquad --

[^9]peripheral waterbodies for waterbirds and their sometime use of the banks of the natural channel of the Liesbeek River abutting the River Club for roosting and/or nesting;

- The majority, 21 of 33 species, of the birds recorded in the two visits were related to wetland the two nats and included several species of provincial conservation interest in addition to both rated as near threatened); ned);
- Greater Flamingos were observed in the Raapenberg wetlands, as well as (at times) in the of banks of sediment in the river channel, resulting in shallow sandy flats, rich in nutrients and therefore probably supporting blue green algae and other micro-organisms on which these birds feed;
- Great White Pelicans are piscivorous and their presence on the Black River and in the natural channel of the Liesbeek River is probably largely because of the presence of (alien) fish;

By contrast the immediately adjacent Raapenberg nature reserve, though of a far smaller are waterbirds;

Waterbird use of the River Club area is heavily influenced by the availability of wetland abitats in the Raapenberg wetlands. The major drawback of the area for waterbirds, despite

 rivers. The nearest significant breeding populations of larger waterbirds are at Intaka Island in Century City and at Rondevlei, near Grassy Park;

- Despite the poor availability of habitat for birds on the River Club site, its location at the confluence of the Liesbeek and Black Rivers means that the site has excellent wetland linkages across the centre-north of the Cape Town metropol;
- In ecological terms the Black River, which is broader and more stable offers the greatest potental for birds. The Llesbeek canal is sterilized by concrete walls and is richest in terms of Weak flow in the natural channel of the Liesbeek River has ronfluence with the Black River; aquatic plants. These plants inhibit most bird use of the clogged waterbody although the steep banks of this channel provide Giant Kingfisher nesting sites;

Apart from the open water habitats of the river channels, there are few habitat patches of value for birds within the River Club site itself.

3.3.3. Mammals

the detailed assessment:
Most of the larger mammal species that would have occurred naturally on the site have become locally extinct, leaving only a subset of small species that still manage to maintain being of Least Concern (LC), with only one species (African Clawless Otter) with a global (IUCN)

- The current significance of the River Club site for birds resides in the attraction of the
 Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Biodiversity

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Biodiversity

and regional (Child et al. 2016) listing of Near Threatened (NT). Otter activity has been
confirmed from the general region. The River Club itself is however unlikely to have a resident
population of otters, but rather a few individuals probably move in and out of this area
throughout the year;
A total of 29 indigenous mammal species may potentially occur on the River Club grounds and
immediate surroundings, but the more realistic probable mammal richness here is about 19
or so species;

- The Faunal Importance Assessment (FIA) score for Mammals on the River Club site is
considered MODERATE at regional and LOW to MODERATE at national scales;
The most important consideration in respect of local mammal assemblages is the
maintenance and/ or rehabilitation of the ecological integrity of the Liesbeek and Black rivers,
including a buffer region along the banks of these rivers and corridors between them.
3.3.4. Reptiles
The faunal specialist also found (see Appendix B for details) that:
O A total of 32 indigenous reptile species could potentially occur on the River Club grounds
and immediate surroundings, but a more realistic probable reptile richness would be
about 20 species;
O of these, the conservation status of these reptiles are almost all listed as being of LC,
except for the Cape Dwarf Chameleon which currently is listed as Vulnerable (VU). This
particular species was recorded on the grounds of the adjacent South African
Astronomical Observatory, and it may possibly also occur within the River Club grounds;
The Faunal Importance Assessment (FIA) score for reptiles in the context of the River Club
site is MODERATE at regional and LOW to MODERATE at national scales; 3.3.5. Amphibians
The faunal specialist provided extensive input into the presence and ecological importance of a
number of amphibian species that occur on the site. While these are outlined in full on Appendix B, the most significant findings are summarised briefly below:
- A total of eight indigenous amphibian species may potentially occur on the River Club grounds and immediate surroundings, but the more realistic probable amphibian richness is about six species;
The conservation statu
- The conservation status of these amphibians are almost all ilisted as being of Least Concern (LC), with the notable exception of the western leopard toad, which is Endangered (EN); Even allowing for the presence of a species of conservation concern (SCC) (that is, the
western leopard toad), the Faunal Importance Assessment (FIA) scor western leopard toad), the Faunal Importance Assessment (FIA) score for amphibians in
the context of the River Club site is MODERATE at regional and LOW to MODERATE at
- The following points are highlighted specifically with regard to the presence of western leopard toads on and in the vicinity of the River Club, namely:

Proposed redevelopment of the River Club, Observatory:

ms / m, which was well within the known salinity range for breeding toads. These data suggest that the toads might in fact be breeding in the water body to the south, which is hydraulically connected to the Black River, rather than the wetlands to the north, which are connected to the water table. It is however my understanding (based on discussions with M. Burger and with reference to the faunal report) that breeding choruses from western leopard toads are often heard in the open Sarcocornia capensis pans immediately in front of the SAAO bird hide (Photo Ab). No standing water remained in
these wetlands in the 2017 site survey, after a particula these wetlands in the 2017 site survey, after a particularly poor wet season in the middle of a drought
and it is likely that the pans would have standing water following overtopping of the river channels in and it is likely that the pans would have standing water following overtopping of the river channels in
wetter years, or as a result of an elevated wet season water table. Under such filled with water from a flood event, their salinity would be likely to be reduced - however, it seems unlikely that such shallow systems would retain standing water long enough for tadpoles to metamorphose into toadlets - some three months later. Increasing salinities would also be experienced in these pans as a result of evapo-concentration, and the presence of Sarcocornia capensis suggests that salinities are likely to be well above $600 \mathrm{~ms} / \mathrm{m}$ as the pans dry out.

Further west towards the SAAO boundary, a few deeper trenches / low lying areas that support Bolboschoenus maritimus vegetation (Photo W) might be fed mainly by river water (artificially diverted by local communities) and thus provide a better toad breeding habitat - albeit at high plant and possibly invertebrate biodiversity cost (see Box 3.2).

The above discussion around salinity and breeding habitat is not necessarily of relevance to the EIA that is the focus of this report. However, it does highlight the need for more detailed assessments of the Raapenberg wetlands including those south of the berm, during western leopard toad breeding cycles, and for a long-term salinity assessment of the wetland system, to determine exactly which of the Raapenberg salt pans and/or peripheral wetlands and "backwater" areas are being utilised as
western leopard toad breeding habitat.

3.4. Summary of key ecological sensitivities

Based on the information provided in the preceding sections, the key biodiversity sensitivities of the River Club and its immediate natural surroundings can be summarised as:

The Raapenberg wetlands - these wetlands include important remnant seasonal clay flats renosterveld wetland, of high conservation importance, which would be particularly vuinerable to impacts such as increased hydroperiod / prolonged or more frequent wetting; The SAAO site includes important Threatened terrestrial renosterveld vegetation (Peninsula Shale Renosterveld) including several endemic and/or red data species;

- The wetlands also support numerous birds as well as amphibians such as endangered western seasonal flow remaintenance of habitat quality for indigenous fauna requires maintenance of seasonal flow regimes and inundation patterns, which in turn affect salinity and other water
quality issues. The wetlands are thus highly sensitive to: ality issues. The wetlands are thus highly sensitive to:
o increased flood velocity, frequency, duration, or m
- Increased flood velocity, frequency, duration, or magnitude (depth);
- Channelisation / drainage of water from the wetlands;
- Diversion of (particularly fresh) water into the wetlands,

The Freshwater Consulting Group \quad Page 48

$\begin{aligned} & \begin{array}{r}\text { Proposed redevelopment of the Rlver Club, observatory: } \\ \text { Environmental Impact Assesment: Blodiversity }\end{array} \\ & \text { o } \begin{array}{l}\text { Removal of existing berms / other structures that have "accidentally" protected the } \\ \text { wetlands from hydrological and/or water quality impacts associated with the changed } \\ \text { hydrology, hydraulics, position and water quality of the Black River }\end{array} \\ & \text { - The Liesbeek Canal is not sensitive as a riverine habitat in its current form; } \\ & \text { - The natural channel of the Liesbeek River is disconnected from the Liesbeek River and now } \\ & \text { functions as a backwater wetland - it does however provide habitat to important bird species } \\ & \text { and may provide breeding areas to western leopard toads; } \\ & \text { - } \begin{array}{l}\text { Connectivity across the site, especially from the Rapenberg wetlands across to the natural } \\ \text { channel and east-west across the site is important for wetland fauna - in particular western } \\ \text { leopard toads; }\end{array} \\ & \text { - Provision of adequate safe, vegetated terrestrial habitat for western leopard toads during } \\ & \text { their non-breeding season is critically important for the sustainability of this species on and } \\ & \text { near the site. }\end{aligned}$
The above issues are considered in assigning significance levels during the Impact Assessments

$\begin{aligned} & \begin{array}{r}\text { Proposed redevelopment of the Rlver Club, observatory: } \\ \text { Environmental Impact Assesment: Blodiversity }\end{array} \\ & \text { o } \begin{array}{l}\text { Removal of existing berms / other structures that have "accidentally" protected the } \\ \text { wetlands from hydrological and/or water quality impacts associated with the changed } \\ \text { hydrology, hydraulics, position and water quality of the Black River }\end{array} \\ & \text { - The Liesbeek Canal is not sensitive as a riverine habitat in its current form; } \\ & \text { - The natural channel of the Liesbeek River is disconnected from the Liesbeek River and now } \\ & \text { functions as a backwater wetland - it does however provide habitat to important bird species } \\ & \text { and may provide breeding areas to western leopard toads; } \\ & \text { - } \begin{array}{l}\text { Connectivity across the site, especially from the Rapenberg wetlands across to the natural } \\ \text { channel and east-west across the site is important for wetland fauna - in particular western } \\ \text { leopard toads; }\end{array} \\ & \text { - Provision of adequate safe, vegetated terrestrial habitat for western leopard toads during } \\ & \text { their non-breeding season is critically important for the sustainability of this species on and } \\ & \text { near the site. }\end{aligned}$
The above issues are considered in assigning significance levels during the Impact Assessments

$\begin{aligned} & \begin{array}{r}\text { Proposed redevelopment of the Rlver Club, observatory: } \\ \text { Environmental Impact Assesment: Blodiversity }\end{array} \\ & \text { o } \begin{array}{l}\text { Removal of existing berms / other structures that have "accidentally" protected the } \\ \text { wetlands from hydrological and/or water quality impacts associated with the changed } \\ \text { hydrology, hydraulics, position and water quality of the Black River }\end{array} \\ & \text { - The Liesbeek Canal is not sensitive as a riverine habitat in its current form; } \\ & \text { - The natural channel of the Liesbeek River is disconnected from the Liesbeek River and now } \\ & \text { functions as a backwater wetland - it does however provide habitat to important bird species } \\ & \text { and may provide breeding areas to western leopard toads; } \\ & \text { - } \begin{array}{l}\text { Connectivity across the site, especially from the Rapenberg wetlands across to the natural } \\ \text { channel and east-west across the site is important for wetland fauna - in particular western } \\ \text { leopard toads; }\end{array} \\ & \text { - Provision of adequate safe, vegetated terrestrial habitat for western leopard toads during } \\ & \text { their non-breeding season is critically important for the sustainability of this species on and } \\ & \text { near the site. }\end{aligned}$
The above issues are considered in assigning significance levels during the Impact Assessments

The above issues are considered in assigning significance levels during the Impact Assessments outlined in Section 5 .

3.5. Rehabilitation opportunities

The degraded nature of much of the River Club site means that its development could present opportunities for rehabilitation / remediation of ecological function, as well as possible negative impacts. The following rehabilitation opportunities were raised by various biodiversity specialists development mitigation or offset activities in Section 5: 3.5.1. Opportunities for renosterveld rehabilitation on the River Club site:

The specialist report (Coastec 2017) identified the following possibilities for augmenting renosterveld conservation on the River Club site, namely through:

- The establishment and rehabilitation of links north and south of the site along the Black River; The use of shale soil and overburden, perhaps from one of the Malmesbury shale aggregate mines this would be an option if infiling of the site is required as is the case withe River Club site alternatives considered here;
- The development of a joint initiative between the River Club and the SAAO to extend the area of
m

ryland renosterveld on both sites.

3.5.2. Opportunities for faunal conservation / habitat rehabilitation on the River Club site

- Birds
3.5.2. Opportunities for faunal conservation / habitat rehabilitation on the River Club site ,
\qquad
Proposed redevelopment of the River Club, Observatory:
The avifauna specialist report (Appendix D) strongly advocated the inclusion of rehabilitated development planning in the degraded portion of land to the ${ }^{11}$ north of the River Club site into development planning, in order to:
Improve general river and wetland habitat condition and biodiversity, using birds as a
biodiversity surrogate;
Provide an environmental node in this urbanising area, which would attract visitors to the development for bird viewing, allow for environmental education and facilitate the above
two objectives. Mammals and reptiles
The specialist recommended that a mosaic of green belts/nodes within the proposed remaining faunal groups. For species like the maintain a degree of ecological resilience for the quality of such ecological nodes could be enhanced to better suit their needs and the habitat the likelihood of maintaining a sustainable population. - Amphibians
The existence of as-yet undeveloped and rehabilitable portions of the former floodplain of the
Black and Liesbeek Rivers offers opportunities to improve during both breeding and non-breeding periods, through the establishment of safe ecological corridors through the site, the provision of appropriately vegetated terrestrial areas, the management of risk to these animals outside of their breeding period and the creation of suitable new breeding ponds / pans - potentially in the floodplain margins, for which rehabilitation has
already been recommended. 3.5.3. Opportunities for genero
The specialist aquatic ecosystems Scoping Report \{Day 2016) noted the following rehabilitation opportunities:
The natural channel of the Liesbeek River
The extent of degradation of the channel, the fact that it has not been lined (i.e. canalised) and the extensive apportunities for rehabilitation to a point which, while unlikely ever to appreach presents conditions, could provide a substantially better quality of habitat, including improved integration between permanent aquatic habitat within the channel and floodplain-to-terrestrial habitat.
From a freshwater ecosystem perspective, recommended rehabilitation interventions would include:
Re-grading of the banks, at least on the right hand side of the river where space permits, to provide a gently sloping bank (no steeper than 1:5 and preferably as flat as 1:7 in places), activities might be necessary to retain certain habitat types. The landscaping dehabilitation allow for slight variation in the position of the toe of the bank with distance along the channel thus creating slight variation in bank steepness and a more hydraulically diverse marsinal area; Inclusion of areas of seasonally inundated off-channel zones, along the channel margins,
which would mimic more natural flooder hich would mimic more natural floodplain zones;
${ }^{11}$ Note that this land was included in the original terms of reference of the avffaunal specialist report. In fact, this land lies
equirements

Proposed redevelopment of the River Club, Observatory:
Environmental Impact Assessment: Blodivestly

- Removal of alien vegetation, ideally including the removal of kikuyu grass but in particular such as Manotoka, replacing them with indigenous species that of woody alien species functions in terms of habitat type (e.g. Milkwood trees (Sideroxylon inerme) and indigenous
Willow (Salix mucronata); Willow (Safix mucronata);
- Possible improvement of the left hand river banks by planting the bottom of the bank with stumps) for roosting or perching by birds), rision of indigenous trees (or dead alien tree left hand channel, for use by birds that nest in banks (e.g. some kingfishers). The mainly canalised eastern channel of the Liesbeek River
- The extent of canalisation along the channel limits opportunities for low-cost rehabilitation, and its replacement with an alternative lined struct of all or sections of the concrete canal, allowance for planting, particularly along the lower, wetter steps) would result in a significant improvement in river quality in these reaches, improving ecological connectivity along the marginal vegetation zone. Such measures would need to be informed by input from a
hydrologist regarding their implications for flood conveyance. Given that there is already clearly a need to address collapse of sections of the canal (Photo P), such interventions should be designed with a view to improving river habitat and not simply maintaining it;
with a more natural lowland river channel - this would be a major (but highly beneficial) intervention in terms of cost and design. The Black River

Recommended rehabilitation interventions could include:
Re-grading of the left hand river bank, to provide a gently sloping bank (no steeper than 1:5 vegetation;

Inclusion of areas of seasonally inundated off-channel zones, along the channel margins,
which would mimic more natural floodplain zones; which would mimic more natural floodplain zones; trees (e.g. Salix babylonica) and replacing the latter with ind kikuyu grass, cannas and exotic the same functions in terms of habitat type, e.g. Milkwood trees (Sideroxylon inerme) and indigenous Willow (Salix mucronata)
/create broad wetland hand banks) of the Black River also offers opportunities to rehabilitate river bank;

In addition, as outlined in the avian report in some detail, the proximity of the various river channels and their associated wetlands to the development area also offers opportunities for for bird-and other aquatic ecosystem function and condition amenity area, of enhanced value for walking trails along the river and improved human connectivity within the Two Rivers

> 3.6. Opportunities to improve amenity value and public access

It is also recognised that re-development of the River Club site potentially affords opportunities to approaches would, if considered further, need to take cognisance of broadisting walking trails. Such improve community access and amenity value, as well as to ensure thater community initiatives to s included did not
Page 51

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Biodiversity

4 DEVELOPMENT PROPOSALS FOR THE RIVER CLUB
During the course of FCG's involvement in this project, the proposed development footprint and termatives have undergone a number of changes, largely as a result of extensive, iterative feedback into the project, by specialists and other members of the design team. stotus quo alternative.

This section outlines this specialist's understanding of these alternatives, at the time of this report
compilation. The assessment of impacts to aquatic ecosystems outlined in Section 6 is based wholly on the premise that this understanding is substantially correct outlined in Section 6 is based whally

4.1. Development overview

Aurecon (2017b) describes the proposed River Club development as comprising approximately 150 $000 \mathrm{~m}^{2}$ of mixed-use development, including retail, office, residential, hotel, community and
institutional uses. Development would occur in 2 precincts, institutional uses. Development would occur in 2 precincts, namely:

Precinct 1 , located in the southern portion of the site fbetween the SKA boundary, the SAAO boundary and natural channel of the Liesbeek River) - if developed this would
contain approximately $65000 \mathrm{~m}^{2}$ of mixed-use floor space (office, retail, hotel, community and residential) in buildings of between 1-10 soor space (office, retal, hotel, community

Precinct 2, located in the northern portion of the site (bounded by the natural channel of

- Implementation of the Berkley Road extension, linking Berkley Road (to the east of the construction of a bridge over the Black River, as shown in west) - this would require channel of the liesbeek River (figure 4.1); Approximately $80000 \mathrm{~m}^{2}(\pm 55 \%)$ of the site would be raised above the 100 -year flood
elevation to aprox
elevation to approximately 7 m above mean sea level.
4.2. Development alternatives
The main differences between the two development alternatives shown in Figures $41-4.6$ revelve
The main differences between the two development alternatives shown in Figures 4.1-4.6 revolve around the proposed treatment of the Liesbeek Canal and the natural channel of the Liesbeek River, with Alternative 1 allowing for the rehabilitation of the canal into a more natural, un-lined channel, and the infiling of the natural channel to create a landscaped open space and stormwater swale system, while Alternative 2 would allow for retention of the canal, with minor landscaping and softening of its edges, and the protection and rehabilitation of the natural channel into an albeit disconnected and rendered unnatural but still functional wetland.

Both development alternatives would incorporate a wide (ranging from 65 m at its narrowest to 100 m wide at its widest point $-T$. Florence, Planning Partners, email to Liz Dayl ecological corridor that would extend across the site in an east-west direction between the development parcels of Precinct natural Liesbeek channel / stormwater swale (to the west). This corridor his ber (to the east) and the

Integral to the above development would be the following components:

elevation to approximately 7 m above mean sea level.
4.2. Development alternatives
The main differences between the two development alternatives shown in Figures $41-4.6$ revelve

[^10]

of both development alternatives for faunal movement through the site - in particular, movement and the provision of terrestrial habitat during non-breeding periods for the western leapard toad. The open space of the ecological corridor would also allow for flood attenuation during periods of high was carried out with input from the wetland ecologist and the faunal spere pite. Sizing of the corridor was carried out with input from the wetland ecologist and the faunal specialist
In addition to the main east-west corridor, the landscape olan also allows for:

- A minimum 10 m wide corridor along the southern (SKA) boundary of the site - this would not be crossed by any roads in terms of the proposed design;
- With the exception of one building on the western corner of the development (15 in Figure 4.1) a minimum 10 m wide corridor between the toe of Berkley Road extension and the building edge access to the site would be from this new road;
Provision for at least two culverts under the road to allow for faunal passage into the presently undeveloped open space to the north, between the natural Liesbeek channel and Berkley Road; A corridor along the western edge of the site - this area, which presently includes the natural
Liesbeek channel, is however treated differently in the two alternatives
 ع．t

Proposed redevelopment of the River Club, Observatory:
Environmental Impact Assessment: Biadiversity

Alternative 2: Treatment of the natural Llesbeek River channel area. Figure as supplied by Planning Partners

The Freshwater Consulting Group
Ver 6: November 2019
Page 60

 'әuе әן

 'spooן леәА-и!

 width of some 10 m is assumed for the summer base flows with the Aurecon hydrological
 hillslope of the SAAO
 section on the right hand abutting the canal wall;
 The design allows for:
rehabilitated river is sufficient to address these concerns.

 ןนueว भaaqse!า әч। Liesbeek channel, shown in cross-section in Figures 4.2 and 4.3 can be summarised as follows:

6LOz Jequanon: 9 reat E9 ased

和

 ssaje asayl otherwise required as part of the respective rehabilitation and landscaping programmes for

 spoadse quaudopənep uouiuros the bank.
 water sports such as canoeing;

river function. The canal (shown in Figure 4.6) would be treated in this alternative as follows:

 The Liesbeek Canal

 The natural channel of the Liesbeek River

This alternative (shown in layout form in Figure 4.4) allows for the following treatment of the canal
and natural channel:

 Stormwaterflows that currently enter the channel at a low level from the urban development
to the west of Liesbeek Parkway would be piped under the infilled swale;

 - Stormwater from the site would be piped to the swale, and daylight as open channel
vegetated bioretention swales; season habitat for western leopard toads; guipzasq ג|q!!sod pue ןe!
 following concept would apply (see Figure 4.3):

 Rehabilitation of the natural

 . concentrated flows than would have been the case in the past. Connecting the channel with the

The natural channel of the Liesbeek River
In this alternative, the ecological focus is

Figure 4.7
Proposed development phasing. Figure as supplied by Vivid Architects

؛ !

 fo souas \forall
(x'v วans!

 into the existing road; into the existing road 4 पппо...47

 $\forall 0$
:Apoueu

Figure 4.1 .
Locations of the four proposed bridges / culverts over the Black River, open space corridor and Lesbeek Channel (wo over the Llesteek channel, comprising barkley Road extension [Culvert 1] and the Liesbeek Parkway crossing [Culvert 2]. Figure supplied by Aurecon. Note that the swale

Figure 4.16
12 over the natural channel of the 1 the wetland swale (Alternative 1) or the rehablitated natural channel of the Liesbeek River (Altemative 2) Figure supplied by Aurecon: March 2018.

roposed redevelopment of the River Club, Observatory: Emilronmental Impact Assessment: Blodiversity

of impacts associated with the proposed dEVELOPMENTS

This section describes the implications of the various components of the proposed River Club development for biodiversity as a whole, including the freshwater ecosystems, terrestrial and aquatic flora and fauna described in Section 3, using the assessment rating provided by SRK and included in Appendix F. The various alternatives are assessed formally in Tables 5.1 to 5.15.

During the course of FCG's involvement in this project, the proposed development footprint and layout of both development alternatives have undergone a number of changes, largely as a result of design team. This process resulted in issues such as the avoldance of (ecologically) sensitive areas, the incorporation of ecological setback areas and faunal movement corridors in accordance with biodiversity specialist requirements and the strategic selection of opportunities that would enhance ecosystem function, quality or sustainability, while affording various development opportunities. To some extent, then, the development alternatives considered in this study already include a substantial
level of mitigation, and the significance of the impacts considered in this section tend to be positive, level of mitigation, and the significance of the impacts considered in this section tend to
or low to medium even without mitigation, despite the scale of development proposed.

Such an approach means that, if authorised, the selected development would, from a biodiversity perspective, potentially not require substantial revising to incorporate additional mitigation measures. However, the risk of such an approach is that some measures, assumed in assessment to be part of the planned development, are not explicitly included in the Authorisation. This author has experience of such projects, where subtle changes in development layout, design and implementation
have significant implications for the end ecological outcome, but are not explicitly addressed in the mitigation measures, because they were included, but not overtly, in the assessed design.

Fundamental to the present assessment is thus the understanding that the design elements described in Section 4 and included in the figures of that section are assumed to be explicitly part of any future development authorisation for the relevant authorisation, unless mitipation measures outlined in this report reauire otherwise.

Since mitigation measures mostly revolve around improving the certainty of the positive aspects of the development outcomes, these are grouped together, as measures required for each phase.

5.1. Impacts of layout and design

The following 15 issues deriving from project layout and design are likely to result in impacts (both negative and positive) to aquatic ecosystems and/or overall biodiversity:

- Changes in the habitat quallity and ecological functioning of the Llesbeek Canal (see section 5.1.1). - Loss of terrestrial habitat for indigenous fauna (see section 5.1.2).
- Loss / degradation of indigenous flaral communities / important floral populations (see section
ion 5.1.4).
Increased westem leopard toad mortalities (see section 5.1.5).

Proposed redevelopment of the River Club, Observatory: Environmental impact Assessment: Blodiversity

Changes in flow regime into the Raapenberg wetlands (see section 5.1.6).
Loss and degradation of riverine wetlands along the Black River margins (see section 5.1.7).
Loss and/or changes in wetland habitat quallity and availability in the areas of the natural Liesbeek
River channel (see section $5,1,8$).
River channel (see section $5,1.8$).
Faunal fatalities (particularly western leopard toads) as a result of construction activities (see ection 5.2.1).
Water quality and habitat deterioration as a result of diversion of fiver (Black River and Liesbeek
Canal) and wetland (natural Liesbeek channel) flows during construction (see section 5.2.2).
Degradation of downstream habitat in the Liesbeek Canal, lower natural Liesbeek channel and Black River (see section 5.2.33).
Disturbance of watercourse bed and banks during infrastructure installation (see section 5.2.4). Degradation of habitat quality or fallure to realise opportunities for improved habitat quality and space maintenance activities (see section 5.3.1).
Contribution to deterioration of water quality in the Liesbeek and Black Rivers (see section 5.3.2). 5.1.1. Changes in the habitot quality ond ecological functioning of the liesbeek Canal Impoct deseription
In this alternative, the liesbeek Canal would be rehabilitated into a functional river channel, It would be edged with gabions on its right hand side, but effectively the canalisation effects flow biodiversity, low hablat heterogeneity, low ecosystem function) would be lost and the following attributes have been included in its design:

- A low flow channel with an earth bed, vegetated along its edges with Phragmites australls reedied and other ind igenous plant species typical or fowland to maintain this as an open is likely to be enough low flow in the channel all yeara round to maintain this as an open
channel, although it is possible that reeds may at times close in the channel and periodic
malienance would be required - this is discussed in section S.3, the low flow channel and be vegetated with a range of indigenous plant species, but it is Ilkely that Phragmites australis reeds and possibly Typho capensis bulrush would making it a narrower on this side of the channel at times - note that the gabion baskets on the right hand side of the channel would probably be fairly sterile unless adjusted to be inundated during the wet season, with wet season baseflows. If vegetated with sedges and areas of higher spatial diversity than simple reedbed, it would be well-suited
for colonisation during perlods of inundation by fish larvae and the aquatic larvae and undered by freshets and small (with in yeor) floods-this A flood channel, ifiely to be inundated by freshets and small within-year) floods - this
area (some 7 m wide) would also be vegetated with indigenous vegetation and would

Proposed redevelopment of the niver Clut, Obsecrvatory:
Environmental impart Assessment: Biodiversty

Table 5.1 Significance of changes in the habitat quality and ecological functioning of the Liesheck Canal							
Matare of timatt	Extantof isuract	hteanty	parstlan of manct	Conseatuence		Slonts:	conpd.
$\begin{aligned} & \frac{\text { ALTI }}{\text { Without }} \\ & \text { Miligation } \end{aligned}$	$\stackrel{4}{\text { Lrant }}$	$\stackrel{3}{\mathrm{H} \text { High }}$	3 Long term treversible withont major effort	$\underset{\text { High }}{7}$	Probable	$\begin{aligned} & \text { hagh } \\ & \text { (Pies.) } \end{aligned}$	Medium
$\frac{\text { ALT2 }}{\frac{\text { without }}{\text { Mispation }}}$	incal		3 Long term Paversible Reversible	$\begin{gathered} 5 \\ \text { Low } \end{gathered}$	Possible	$\begin{aligned} & \text { Very } \\ & \text { iow } \\ & \text { foos. } \end{aligned}$	High
Stental minisiton meosuras:							
An Environmental Control Officer (ECO) (or similar designation) with experience in construction work involving or in proximity to freshwater ecosysters rmust be on site on at least a weekly bssis during all works involving canul rehabilitution and lor landscaping of adjacent areas.							

5.1.2. Loss of extent of terrestriol habitat for indigenous fouma
impact description
Both development alternatives would entail the loss of substantial areas of terrestrial habitat which currently is understood to provide non-breeding habitat for western leopard toads. The faunal specialist also noted the possible use of the site as habitat for various indigenous small animals including the dwarf chameleons, noting however that the quality of such habitat is at present poor,

 other vegetated areas provided that they have adequate cover, the degree of present cover on the site (e.g. flower beds) is limited, and connectivity to areas with cover is fraught with risk (vehicles, lawn mowers, golf ball collection vehicles).

Compared to the present situation, and given that the proposed development alternatives would both include large areas of landscaped open space, with the design intention of the provision of high quality, safe faunal environments, the loss of degraded terrestrial habitat is considered of low negative
 The recommended Conditions of Development Authorisation outined in Section 8 alm however to perspective.
 mitigation.

Impact descriotion
Although both alternatives entail development of large areas that currently afford connectivity / Although both aknall fraught with risk to small fauna (e.g. driving range activitles). Both proposed alternatives allow for substantial faunal corridors, fauna (e.g. driving range activities). Both
as outlined in Section 4.2, which allow

- Longitudinal links along the canal and natural Liesbeek channel areas,
- East-west links along the eastern and western boundaries and through the centre of the site - Links under the bridges and roads that would otherwise fragment these corridors.

The following aspects of connectivity are particular to different alternatives:

- Alternative 1:

In addition to provision of the generic corridors outlined above, this alternative would improve existing faunal connectivity in the following manner:

- Between the SAAO and the site and the Raapenberg wetlands and the site - at present, the canal affords limited to no connectivity for fllghtless fauna, as a result of its steep sides; the rehabilitated Llesbeek Canal would thus extend the zone of connectivity between the SAAO site and the River Club to the full length of the rehabilitated canal. This
would be a positive outcome, particularly for the conservation of western leopard toads,
the movement of which onto the site would be facilitated by removal of the canal; between the SAAO site and the River Club to the fulliength of the rehabiatated canal.
would be a positive outcome, particularly for the conservation of western leopard toads,
the movement of which onto the site would be facilitated by removal of the canal; Connectivity between the Raapenberg wetlands, the Black River and the remnant natural Liesbeek channel and associated stormwater swales would be facilltated by the proposed east-west corridor across the site-the quality of connectivity would be dependent on the landscaping details of the corridor;
- Longitudinal connectivity along the lower portion of the rehabilitated canal, below the lower pathway, would be a significant improvement offere facilitating faunal movement along the planted, non-lawned areas would be efrelve ar fard and providing high quality habitat for species such as western leopard toads in their non-breeding season in particular;

Proposed redevelopment of the River Club, Observatory: Environmental mpact Assessment: Biodiversity

5.1.4. Changes in founal connectivity

 .5.1.4. Changes in founol connectivity ess across most of the site, the quality of such connectivity is poor and fraught with risk to sm

路
\square 0

- Alternative 2 :
- The canal in this altemative would offer the same (poor) ecological connectivity as that in the present situation;
- Connectivity between the Raapenberg wetlands, the Black River and the remnant natural Liesbeek chamel and associated stormwater swales could be facilitated by the proposed east-west corridor across the site, although the reterts the Black River. The quality of
 -
\circ

Proposed redevelopment of the River Club, observatory:
Environmental Impact Assessment: Blodiversity
on their efficacy. Problems with the design of the above roads, bridges and open spaces from a faunal corridors perspective include:

- The position of culverts in the main $\{65-100 \mathrm{~m}$ wide) east-west corridor (Figure 4.15): these are located in the central part of the corridor. This means that fauna moving along the sides of the corridor would not find connectivity, and unless the landscaping planting plan actively includes swathes of cover that guide fauna to zones of connectivity, these culverts might not play as strong
a role in ensuring faunal connectivity as originally planned. a role in ensuring faunal connectivity as originally planned;

Connectivity along the northern east-west corridor (along the property boundary abutting Berkeley Road) would be reduced / possibly obstructed at the western end of the corridor, by a pinch-point
at the access s to development block 15 (see Figure 4.1 - - this apparent "dead end" would make at the access to development block 15 (see figure 4.1) - this apparent "dead end" would make
this corridor highly problematic from a faunal perspective, particularly given Its length and overall narrowness. The corridor would also connect only in two places to the degraded open space and natural Liesbeek channel north of Berkeley Road -given the length of this section of the road (some 550 m estimated off GOOGLE Imagery), the two connections would be unlikely to provide effective linkage between the northern and southern sides of the road. This means that the remnant section of the natural Liesbeek channel would be ecologically isolated between the railway line to
its north and Berkeley Road to the south; its north and Berkeley Road to the south;

The width of Beckley Road in relation to the width of the culvert - the culverts under Beckley Road may be too dark to encourage the passage of western leopard toads through the culvert;

- The positioning of the culverts under the road connections that cut across the Berkeley Road corridor appear to be advantageous, in that fauna would be "channelled" along the toe of either road, towards the culvert. However, where culverts pass under wide roads such as the Berkeley
Road extension, the provision of culverts alone may not be sufficient to persuade western toads to pass through and such corridors might thus be ineffective - this would be a significant impact, as links north into the (as yet) undeveloped ground north of the River club extending to the natural Liesbeek channel, in which the toads may breed, are considered important;
-The southern east-west corridor abutting the SKA boundary is relatively short, making its narrow -width less problematic. The sustainability of this corridor is however likely to be threatened in the future by development of the SKA site, as it is assumed that the latter would require road access
to the development, making crossing of the corridor inevitable; to the development, making crossing of the corridor inevitable;
The design of the Berkeley Road bridge over the Black River would

The design of the Berkeley Road bridge over the Black River would effectively cut off longitudinal connectivity along the lower bank and top of bank, as a result of extension of the infilled portion
of the road all the way to the first pier (Figure 4.14). This issue would be problematic to of the road all the way to the first pier (Figure 4.14). This issue would be problematic to small is already relatively sterile, with little vegetation cover on the upper bank / floodplain, through which culverts would afford connectivity;

- The Berkeley Road bridge (Culvert 2 - see figure 4.16) over the natural channel of the Liesbeek River is also problematic, in that it would allow only up- and downstream connectivity at the level of the channel itself - this means that aquatic fauna could pass through the culverts but that terrestrial fauna would be isolated on one side of the road.

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Biodiversity

- In the case of Alternative 2 (rehabilitation of the channel) the four culverts as shown would also require constriction / Infilling of the channel at this point, as the culverts do
- The ecological significance of the above issues would be greatest in the case of Alternative 2 , in which the rehabilitated natural channel is intended as the focus for ecological improvement rehabilitation. In the case of Alternative 1, the onus for rehabilitation and connectivity is mainly provide better levels of faunal connectivity than Culvert 1, os the former includes five culverts located above the low flow channel, which would allow terrestrial connectivity. Again, in the case of Alternative 2, the nevertheless moderate level of fragmentation that would occur in an area intended actively to promote rehabilitation is seen as an opportunity cost. The connectivity provided by the culverts in terms of Alternative 1, where the focus of ecological rehabilitation is in the canal, is considered quite adequate.

$$
\begin{align*}
& \text { Essential mitigation measures } \\
& \text { The following mitigation meas }
\end{align*}
$$

n. This area must be landscaped so that it provides wide swathes of indigenous planted vegetation that ensure continuous vertical cover along the length of the corridor preferably on both sides - as a guideline, at least 40% of the main ecological corridor
should be managed as indigenous planted corridor habitat, without lawn or pathways; b. Efforts must be made to establish renosterveld vegetation in the corridor - ideally, using recommendations made in the botanical report for the import of soils from nearby quarries in renosterveld areas - a botanical specialist should be approached during the design phase for input into appropriate, practically obtainable plant species

Ideally, an additional culvert should be located on either side of the corridor, so that
these edges do not become closed off;
d. The faunal specialist should have final sign-off on the detailed landscape plan for this corridor, and input during onsite implementation to ensure that it meets the required
specifications;

The following mitigation measures are considered essential.
Both alternatives
i. The main ($65-100 \mathrm{~m}$ wide) east-west corridor: for this use;
$\stackrel{\pi}{2}$
電
-
ii. The northern east-west corridor:

The Berkley Road toe / side slopes should be as steep as possible, in order to reduce The area between the development edge and the road must be landscaped with plants that will facilitate its role as a corridor;
\qquad

Proposed redevelopment of the River Club, observatory
Environmental Impact Assessment: Biodiversity

Proposed redevelopinent of the River Club, Observatory: Environmental Impact Assessment: Biodiversity

vi. Proposed Berkeley Road crossing over the Liesbeek channel (Culvert 1):
a. The crossing must be adjusted to allow for terrestrial faunal connectivity along the
landscaped swale connecting into the remnant section of the natural Liesbeek
channel downstream of the development, by adding at least three similarly sized
($1500 \times 1500 \mathrm{~mm}$) culverts to the design, located on the terrestrial margins of the
swale. These culverts would need to be located only on the right hand channel
margins (that is, culverts on the steep Liesbeek Parkway side oi t the channel would not
be necessary or desirable). Inclusion of overhead grids for lighting of the culverts
would be desirable and must be con sidered in final design;

The position of the main and minor culverts must be finalised when the location of
the swale (closer or further from the development boundary, as shown in the options in Figure 4.6) is finalised;

viii. The planted swathes through the main east-west corridor and the corridor as a whole must tie in to the landscaped edge / buffer area of the canal - habitat quality of this edge is likely to be low;
ix. The pathway shown in figure 4.6 cutting across the buffer area should be raised in places to allow a 300 mm connecting space beneath the pathway, for faunal passage - this could be achieved by excavating out low points during construction of the pathway / boardwalk; The pathways through the canal buffer area must be designed to prevent toad passage into the development - toad barriers should be included, and the top of the buffer area should be edged by a toad-barrier lined pedestrian pathway that is separated from the roadway and
thus the main development, with toad barriers; xi. Proposed Berkeley Road crossing over the natural Liesbeek channel (Culvert 1):

In this alternative, it is particularly important that the rehabilitation potential of the channel is maximised. The design of the structure must be amended to allow spanning of the river channel, as has been included in the case of the Black River bridge, with the following essential design elements included:
i. The bridge must span the full rehabilitated channel and the full buffer width on the development side of the channel;
ii. Piers may be included in the design to facilitate the required length of span;
iii. Infilling of the buffer to accommodate the road would not be permitted; iii. Infilling of the buffer to accommodate the road would not be permitted;

Note that inclusion of a bridge rather than a culvert crossing was discussed in project planning
meetings and agreed on in principle for this alternative.
xii. New (southern) Liesbeek Parkway link road over the Liesbeek channel (Culvert 2): Again, as in the case of Culvert 1 , it is particularly important that the rehabilitation potential of the $\begin{array}{r}\text { cure must thus be } \\ \text { Page } 87 \\ \hline\end{array}$

The Freshwater Consulting Group

> a. A condition of any future road crossings over this corridor (e.g. associated with SKA building access) must be the inclusion of bridging or adequately sized culverts to maintain faunal connectivity - this must be shown on the final layout plan;
> . The area between the development edge and the southern site boundary must be landscaped with indigenous vegetation, laid out so as to provide a diversity of heights
and densities of plants that will facilitate its role as a corridor: Berkeley Road bridge over the Black River:
> c. The pinch-point at the western end of the corridor (development block 15) must be widening thereafter to 10 m ;
> each of the access roads onto the site; in light and mitigate against the effects of the width of the road; inifitrond migateggan
> e. Consideration should be given to the provision of road grids over the culverts, to let

> The southern east-west corridor b. The ar mi s be shown on the final layout plan;
i. The extent of the fill platform must be pulled back, so that the bridge spans
the full width of the Black River and its recommended ecological buffer /
setback of 20 m , measured from the top of the bank.
b. On the River Club side of the channel (left hand bank):

The

[^11] faunal access to the development area itself:
The freshwater Consulting Group Nor : November 2019

Proposed redevelopment of the River Club, observatory:
Environmental Impact Assassment: Biodiversity amended to allow spanning of the river channel, with the following essential design elements
included:
i. The bridge must span the full rehabilitated channel and the full buffer width
on the development side of the channel;
ii. Piers may be included in the design to facilitate the required length of span;
iii. Infilling of the buffer to accommodate the road would not be permitted.
Nate that inclusion of a bridge rather than a culvert crossing was discussed in
project planning meetings and agreed on in principle for this alternative.
Table 5.4 provides a more formal assessment of the impacts described above, with and without
mitigation, with relevant mitigation measures repeated in the table for ease of future reference. Note
that the Regional rating for extent takes cognisance of the conservatlon status of western leopard
toads. The difference in outcomes "with mitigation" between the two alternatives \{Low positive in
Alternative 1 and Very Low to Low negative in Alternative 2 , really reflects the tremendous
improvement in ecological connectivity that would result from removal of the canal in Alternative 1.

The Freshwater Consulteng Group $\quad \underset{\text { Per 6: November } 2019}{\text { Pa }}$

The freshwater Consulting Group $\quad \underset{\text { Page } 89}{\quad \text { V: November } 2019}$
Proposed redevelopment of the River club, Observator:
Environmental Impact Assessment: Biodiversity

Impact description

The faunal specialist engaged in this project highighted a number of potential negative impacts to western leopard toad longevity and thus the sustainability of the populations of this simportant species
in the Observatory area (see Appendix B). These have been summarised as follows: in the Observatory area (see Appendix B). These have been summarised as follows:

- Population fragmentation: this issue has been dealt with under the impact of changes in - Fatalities associated with roads/vehicles
The development design for Alternative 1 has been amended already to include measures that discourage western leopard toads from accessing the built-up components of the development, and seeks to direct them through and into the rehabilitated and other open spaces of the development. Provision of toad barriers on the downslope side of both sets of

Detall of proposed toad barrier on roads stahen from Figure 4.15) Pitfall fatalities - these are possible in areas of the development where toads may be trapped e.p. steep-sided channels, stormwater drains, water features, as well as infrastructure housing mortailites by means of starvation or dehydration or drowning and it is noted that eve may cause

.
pitfalls can cause toad mortalities - for example, the faunal speciallst noted that small plastic irrigation boxes that were present on the River Club golf course at the time of the 2016 survey were entrapping and killing toadiets;

- Mortalities associated with harsh terrain - large open (unsheltered) areas such as sports fields, grassed parks and parking areas could also cause substantial mortalities, as a result of dehydration and fatigue, for example when thousands of newly metamorphosed toadlets inadvertentily arrive
on such terrain. Greater visual exposure to predators such as crows may also be a contributing factor of toad mortalities under these circumstances. factor of toad mortalities under these circumstances.

Such harsh terrain would potentially occur in the grassed expanses between the upper pathway
and the lower pathway of the rehabilitated canal (Alternative 1) (both alternatives), in the event that these are dominated by lawns rather than indigenous planting with cover and height;

- Obstructions - Solid brick or concrete walls, or fine mesh fencing and electric fences limit dispersal options for wandering toads - examples of such could occur in the constricted northern east-west corridor, arready described in section S.1.4. In general, however, the proposed development layout does not include such obstructions in open space areas, other than where deliberately
introduced to prevent western leopard toad access le.g. toad barriers on roadd edsest The above issues might result in nepative impacts to westers on road edges).

The above issues might result in negative impacts to western leopard toads. They have
however largely already been considered in the existing design, and compared to the present however largely already been considered in the existlng design, and compared to the present
situation, where toads are exposed to large areas of hostile space as well as traffic without any protective interventions, the negative significance of such risks are considered medium at most, and would have been rated as Low, without the consideration that the scale of development is likely to increase the frequency / risk of impact.

Essentioladitional mitiqation measures
The foliowing measures, some of which are implicitly if not explicitly already covered to some degree in the landscape plan, must form part of mitigation requirements:
i. Landscaping of open space areas and corridors must overtiy aim to provide a high quality of cover and refuge for western leopard toads (as well as other indigenous fauna) - the planting plan must be approved by a botanical specialist and the layout / dimensions of planting areas in all corridors and open space areas must be approved by the faunal speciallst prior to implementation:

The required measure would need to include a substantial increase of low and medium height vegetation cover, with mixed plant species so that invertebrate (i.e. western leapard toad preyl diversity and abundence would be promoted. The more of this type of habitat available in the area, the greater the prospects for maintaining viable breeding stock in perpetuity. However, the areas immediately adjacent to toad exclusion barrier walls should not be
vegetated with anything higher than lan or vegetated with anything higher than lawn or a very low ground cover, because vegetation
build-up right next to such barrier may allow toads to clamber over. Physical shelters for western leopard toads should furthermore be integrated within the landscaped/zardened open space area - the faunal report suggests approaches such as the use of natural logs, or artificial structures such as pieces of broken pots or ceramic pliping cut lengthwise. The

Proposed revievelopment of the River Club, Observatory: Environmental Impact Asscssment: Blodiversity

improved moisture retention abilities of such sheiters should be advantageous to western leopard toads, and their overall survival rate may thus be boosted;
ii. The side slopes of the road across the main ecological corridor should be designed to be as steep as possible (preferably vertical and stabilised with gabions, stone pitching or similar) and the open space area below the road should not be landscaped upwards to the road edge. Toad barriers shouid be used along the road edge as already included in design, but the base
of the road should be cdged by a stormwater drain that slopes gently outwar on road side and is vertical on the road side edge; planting of the road side slopes should also aim for maximum sterility \rightarrow mown grass or lining, to minimise its attractiveness to western leopard toads and other fauna;
iii. Pitfall-type structures (drains, stormwater canals, channels, water features and all manhole type structures must overtly be designed to allow toad escape options and limit access; Where fencing is required on the development or its boundaries, such that it would interfere with required faunal connectivity, such fencing should be designed such that it does not restrict the movement of small terrestrial animals - thus 300 mm high $\times 200 \mathrm{~mm}$ wide access electrified within 300 mm of the ground;

During the operational phase of the development, extensive education and awareness campalgns must be launched to raise awareness around the life eycle and conservation status of western leopard toads, and the rationale behind the protection methods being employed
on the site ; Alternative 1

Connectivity across the landscaped swale to Liesbeek Parkway must be limited to all, through the following measures:

The existing steep to vertical earth bank, in the area extending from the proposed Berkley Road extension on the north viestern corner of the development (Culvert 1) to the southern side of where the new internal access road would eventually join up with Liesbeek Parkway (Culvert 2),
should be retained as a steep to vertical sided earth access up this bank by western leopard toads, while retaining the earth bank, valued as a bird nesting area;
.. Where the above steep bank is not retained, toad barriers must be installed reduce toad access over the road busbeek Parkway waiking / cycing trail, to the site - such barriers are however shown in concept in Figure 4.16; the site - such barriers are however shown in concept in Figure 4.16;

Where the walking trail transitions from its position above the vertical earth
bank to its position at the top of the (i.e. the landscape shown in Figure 4.3), the pathway must remain the swale (i.e. the landscape shown in Figure 4.3), the pathway must remain edged with
a toad barrier - Appendix 2 of the faunal report (see Appendix B of this report) provides illustrated options for creating such barriers;

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Blodiversity

> a. Pathways / walkways along the canal area should be re-designed so as to prevent, as b. The toad barriers along the Liesbeek Parkway pedestrian walkways (FIgures 4.26 and 4.17) must be included.

> Table 5.5 provides a more formal assessment of the impacts described above, with and without
mitigation.
The requited measure would nced to include a subustantlal increase oflow and medium helqhtvegetation
cover, with mixed plant species so that invertebratat (i.e. western leopard todium preyt) tiversstyr and
 road exdusion barrier waits should not be vegetated with anything higher than lawn or a very low
oound cover, because vegetation buld -up right next to such barrier nay ollow toosds to clamber over. nyslesi shetters for western leopard toads should furthermore be integrated within the Mgs, or artificial structures such as pheces of broken pots or ceramie eppling cut length wifise. The Improved verall survival rate may thus be boosted; The side slopes of the road across the main ecologital corriddor should be desiened to be asteep is
 on the road as already included in design, but the base of the road should be edged by a stormwater
droin that slopes gently outward on the non-road side and is veritcal on the road side edge; plantlog of the road side slopes should aiso elm for maxtmum sterility - mown grass or lining, to minilmise tit Hfflll-vpess structures (drahs, stornwator canals, channels, water features and all manhole type Whare fencing is requurred on the tovelolopment orcape opttons and limitt accesss;
 10 m along a lengeth of fence, which should not be electrified within 30 mm of the ground; -
 and the rationale behind the protection methods belng employed on the site;
Aternative.:
$\frac{\text { a. }}{}$ Connectivity across the andsen
${ }^{12}$ Alternative 1 :

- For the 0.5
For
2 cm) If any, and in some cases decreases (1 to 2 cm) in water levgit increases (1 to Liesbeek Rivers would occur, with decreases in flood level as a result of increased capacity

[^12]\section*{Ver \in| Page November 2019 |
| :--- |}

Propased redevelopment of the River Club, Obsenvatory: Environmentai tmpact Assossment: Blodiversity

Propased redevelopment of the River Club, Observatory: Environmentai Impact Assessment: Blodiversily							
	native 2:	will reduce access up this bank by western leopard toads, whlle retalining the earth bank, valued as a blrd nesting area; Toad barriers must be installed on the development side of the Lesbeek Parkway waiking / eycling trall, to reduce toad access over the road but allow access from the road skde into the site; Where the walking trall transitions from its position above the vertical earth bank to Its position at the top of the gently sloplng banks down to the swale (l.e. the landseape shown in Figure 4.3), the pathway must remain edged with a toad barriet -Appendix 2 of the faunal report (see Appendix B of this report) provides Bliustrated options for creating such barriers;					
	a. Pathways / walkurays along the canal ares should be re-designed so as to prevent, as far as poss'ble, the passage of western leopord toads into the main development area; must be included. b. The toad barsiers along the Llesbeek Parkway pedestrian walkways (Figures 4.16 and 4.17)						
$\begin{aligned} & \frac{\text { ALTI }}{\text { Whith }} \\ & \text { Mly?ation } \end{aligned}$	${ }_{\text {Regionat }}$	$\begin{aligned} & 1.5 \\ & \text { Low } \end{aligned}$	$\begin{gathered} 3 \\ \text { Longterm } \\ \text { Itraversible } \end{gathered}$	$\begin{gathered} 6.5 \\ \text { Medium } \end{gathered}$	Possible	$\begin{gathered} \text { Low } \\ \text { (Neg.) } \end{gathered}$	Medium
	$\stackrel{2}{R_{\text {Regional }}}$	$\begin{aligned} & 1 \\ & \text { Low } \end{aligned}$	Long term trreverslble	$\begin{gathered} 6 \\ \text { Medium } \end{gathered}$	Possible	$\begin{gathered} \text { Low } \\ \text { (Neg.) } \end{gathered}$	Medium

impact descriotion
The aquatic speciallst Scoping Report for this project (Day 2016) ralsed concerns that if infilling of the River Club site as proposed resulted in even slight increases in the height, frequency or duration of floods passing into the Raapenberg wetlands, there might be significant ecological effects. The information presented in this report (see section 3.1.8 Aquatic ecosystems: Raapenberg Wetiands) increases in low salinity water (e.g. from the Liesbeek River). The likely fferticularly if coupled with include expansion of low-importance Phragmites australis and even Typho capensis wetland at the expense of what are assumed to be more natural remnants of past seasonal Renosterveld wetlands which have ironically been protected from changes in flow in the Black River through the construction of berms between it and the adjacent rivers.
While the above issues would be cause for serious concern, the hydrological study of Aurecon (2017a) found that:

Proposed rectevelopment of the River Club, Observatory: Environmental impact Assessment: Blodiversity

site would thus exert a negligible effect on the hydrological regime of the Raapenberg wetiands, and is not considered a threat in this regard. This compares with the 125 mm cowering of the level of inflows and outflows into the wetland as a result of the linking channel, which is likely to exert a significant negative effect on wetland function. Alternative 2 :
It is assumed that flood changes would also be negligible, although the decrease in flood
level would not occur.
a mitigation measures are applicable.
Infilling of the recently constructed tinking channel between the Liesbeek Canal and the wetland would
however be strongly recommended.
Table 5.6 provides a more formal assessment of the impacts described above.

5.1.7. Loss and degradation of riverine wetlands along the Black River margins The proposed Berkley Road Extension bridge over the Black fiver would result in the definite loss of a section of fringing Phragmites australis wetiands along the river bank, as a result of the planned road that would be infilled to the bottom of the river bank (see Figures 4.13 and 5.2). This structure woutd degradation, namely: \qquad

- Loss of marginal wetland
Disruption of longitudinal connectivity
for terrestrial and semi-aquatic faunal
along the river bank and margins (this
mpact has been dealt with aiready in
Disturbance to birds utilising the "palm island" habitat described by the avifaunal
specialist as of particular habitat specialist as of particular habitat
significance because of the roosting habitat it affords to birds, despite the D). The specialist noted however that
D) birds are likely to become rapidly
accustomed to increased traffic on roads accustomed to increased traffic on roads
associated with the development, provided that they themselves were not targeted by any
aspects of the development.
Proposed redevelopment of the River Club, observatory:
Environmental Impart Assessment: Biodiversity
Lass and/or changes in wetland hobltat quallty and availabillty in the areas of the natural
Liesbeek River channel 5.1.8.

Proposed redeyelopment of the River Club, Observatory: Environmental Impact Assessment: Blodiversity

mitigation.
Significance af loss and/or changes in wethand habitat quality and availability in the areas of the
natural Liesbeek Piver channel
mpact descr
The Liesbeek River channel would be filled in in this alternative, resulting in the following changes In wetiand and terrestrial habitat quality and availabllity:

- Loss of permanent standing water wetland habitat (some 623 m of channel length) habitat may presently be used as a breeding area by western leopard toads and its Toss without replacement is assessed as a significant impact; this alternative would entail some loss of this habitat - however, rehabiliotation of the main canal would in turn provide the vegetated margins required by this species, Loss of steep earth river banks potentially used as bird nesting sites (e.g. kingfishers) on the left hand (Liesbeek Parkway side) river bank; Loss of wetland amelloration function for stormwater currently discharged into the - The creation of shallow swale wetiands (assumed to be $<300 \mathrm{~mm}$ deep) on the infilled area, with the swale discharging into the extant remaining channel downstream of the site. Thesewetlands would be lakely to be seasonally Inundated for short periods
of time only, so allowance has been made for the creation of occasional weirs in the swales to allow longer term ponding of water to create western leopard toad breeding areas. This would also create improved wetland habitat for aquatic insects and ather
fauna compared to the swales without shallow weirs; fauna compared to the swales without shallow weirs;
Alternative 2:
In this alternative, the physical habitat quality and diversity of the channel would be improved substantlally, by reshaping the channel banks and planting them as wide, indigenous vegetated wetland margins, with improved faunal accessibility in and out of the wetlands. The generous buffer
area (see Figures 4.4 and 4.6) could provide terrestrial areas for Western Leopard toads outside of area (see Figures 4.4 and 4.6) could provide terrestrial areas for western Leopard toads outside of
their breeding season - there would be less of such areas in this Alternative than in Alternative 1 . Essentiol mitigotion measures
- Alternative 1 :

1. Additional artificial wettand ponds sula befor
Additional arificial wetland ponds, suitable for breeding in by western leopard toads
should be created - at least two such ponds are recommended, roughly sized with diameters of around 10 m . They should be excavated to lie within the summer water table level or alternatively be lined to retain water, and should be landscaped with gently sloped sides ($1: 5$ or less steep) and planted with indigenous wetland vegetation that is connected via planted landscaped swathes to the main east-west faunal corridors, with plants utilised being indigenous species with a range of textures, height and densities that can both provide cover and safe movement corridors. Note

Proposed redevelopment of the River Club, Observatory: Environmental Impact Ascossment: Birdlvarshy

Essential mitiqation measures
While avoidance of any fatalities to on-site fauna including westem leopard toads is not considered n achievable objective, minimising fatalities by a combination of search and removal and the creation f safe refugia during construction should be aimed for. The following measures apply (reference to phases as shown in Figure 4.7):
i. Faunal specialist to conduct search and rescue for western leopard toads fand any other toaring with animals thus found bed during this actiwh prior to any on-ste construction)

 windbreak fencing may be used for this purpose, provided that it is regularly inspected for
damage / openings. Search and Rescue operations must be overseen by the faunal specialist, and should include record-keeping;
a. - temporary access roads across the corridor must be raised with pipe cuiverts so
a construction access $70 n e$ of 15 m oither side of the prosen; corridor must also be fenced off, with the connecting pipes described above
protruding on either side of this fenced off area; Phase 4 (as depicted in Figure 4.7) can commence simult
Phase 4 (as depicted in Figure 4.7) can commence simultaneously with Phase 1, if required,
provided other mitigation requirements are met;

its buffer area - this is because this zone connects to the Rapenberg wetland toad
populations; populations;
v. Commence rehabilitation of the Liesbeek Canal in the first summer after commencement and ensure landscaping is completed in March of the following year so that plants have time to establish before the start of the wet season when the river is vulnerable to erosion;
 of the 1:100 year fioodline) must be fenced, to prevent monted canal zone (l.e. the top other fauna into construction sites;
Raapenberg wetland to be fenced off temporarily along the top of the river channel on the right hand bank prior to start of any construction on site, to prevent WLTs passing into the construction zone;
vill. Conduct bulk earthworks, installation of structures (e.g. gabion baskets) and landscaping planting of the canal and the remnant natural Liesbeek River channel during the dry season only (between lanuary (after Western Leopard Toadlet migration) and May (before major
rains) - disturbed areas must be planted prior to the start of the wet season in each case; Landscape the main east-west recreational buffer area in direct consultation with a faunal
Development of Phase 3 may take place only after completion of the land River. At this point, the fenced off infill areas north of the site can be opened and
connectivity of fauna secluded in these areas restored;
Proposed redevelopment of the Rlver Club, observotory:
Envirommental Impact Assessment: Biodiversity

	${ }_{\text {L }}$!		$\stackrel{5}{\text { Low }}$	Probable		
	coat	${ }_{\text {cow }}^{1}$	Longterm	${ }_{\text {Low }}^{5}$	Proboble	${ }_{\substack{\text { cow } \\ \text { coost }}}^{\text {cos }}$	

5.2. Construction phase impacts
The construction phase of the proposed project is one where the isks of incuring significant damoge section identifies and assesses the most relevart potential inos or Mis project ẹre highest. This section identifies and assesses the most relevant potential impacts accruing from the construction
phase.
5.2.1. Founal fatalities farricularty western leoporrt toods) as a resuit of construction activities The construction phase would result in the construction on and the passsge of vehicles through large areas of terestrtial habitatand in the vicinty of large areas of wettand and other watercourses. It is would be of medium to to high negative signtificance, given the Endongered status of the affected western leopard toads and tive size of the impoateded area.
In the event that construction occurred during adult or toodlet migration stages (l.e. around July through to November / December respectively), the risks of moratidies (e.g., entrapment in excavations would be substantially higher, evene though mosts such migrations occur only at n night, and
thus after construction activity and vehice movement
The proposeded construction approach would hovemener would be belikely to be vastly reduced.
manage construction impacts such is these. The first phase would be the construction of berte Road and the road across the main ecologicial coridior followed by pe the construction of Berkey 1 and 2 , but noting that developmenent funding parameteres might resultifin noo s sequentiol def develocoments of the phases shown in Figure 4.7.

Proposed redevelopment of the River Club，Observatory：
Environmental Impact Assessment：Blodiversity
Infll and rehabilitate the original course of the Liesbeek River in summer，and after the establishment of the main east－west recreational buffer area and the rehabilitated canal

Landscape the ecological corridors on the northern and southern property boundaries once the respective development platforms are in place only；

The Raapenberg wetlands must be managed as a no－go area for all construction vehicles and personnel throughout the construction period，and should be fenced off at its northern boundary berm，with wire mesh fencing－such fencing must however include holes slzed to allow frunal passage through the fences，unless otherwise required fe．g．during rehabilitation of the Liesbeek Canall－holes 30 cm high $\times 20 \mathrm{~cm}$ wide at $5-10 \mathrm{~m}$ intervals should be created．Alternative approaches such as use of a simple temporary pole fence， with cross－beams could also be used，as these would allow faunal connectivity－they would however need adaptation during periods when faunal access needed to be prevented（e．g．
during Liesbeek Canel rehabilitation warks）． during Liesbeck Canel rehabilitation works）；
xiv．A detailed Construction Phase Environmental Management Programme（CEMPr）must be drawn up，outlining inter ofla the required sequence of phased activities－the details of this plan would require careful input from the biodiversity as well as the civils and landscaping teams．The measures included in this report as Construction Phase mitigation should be included in such a document，which should also take cognisance of the additional measures Alternative 1 ：
 site，and the natural Liesbeek channel must be maintained－this can be achieved if the areas are fenced off together．This measure is important because it means that search and rescued toads can at least access the natural channel of the Liesbeek River during breeding，and
potentially migrate along the Black River corridor to reach the Raapenberg wetlands； potentially migrate along the Black River corridor to reach the Raapenberg wetlands；
Rehabilitation of the Black River corridor（see mitigation in Section 5．1．8）in the vicintion Rehabilitation of the Black River corridor（see mitigation in Section 5．1．8）in the vicinity of the new bridge would need to take place after rehabilitation of the canal，and after
construction of the new proposed Berkley Road bridge，after which this important corridor would be functional；

The main east－west ecological corridor must be landscaped during summer（earthworks） into early winter（planting phase）－commencement of landscaping of this corridor should take place within one year of completion of landscaping of the rehabilitated Canal．The rehabilitated corridor must tie into the natural Liesbeek channel area，but should initially be
fenced off from the area，during construction，and allowed fenced off from the area，during construction，and allowed rather to link inta the
rehabilitated canal corridor，leading to the Raapenberg wetlands．Links between the open space north of the site and the natural lhanel argerg wetlands．Links between the open fencing to prohibit toad passage through this area，prior to the start of construction activities in the natural channel area；

Another toad search and rescue would need to take place prior to commencement of infilling and rehabilitation of the natural Liesbeek channel，with rescued toads being placed in the rehabilitated east－west corridor（assuming that it is adequately established）or other nearby
suitable safe refugia；
$\dot{\bar{x}}$
室
\qquad 둔
－
suitable safe refugia；
The Freshwater Consulting Group
Page 3

都

Proposed redevelopment of the River Club，observatory： Environmental Impact Assessment：Biodiversity

mill and rehabilitation of the natural Liesbeek channel should take place in summer，once the main corridor and rehablitated river course have been established； Western leopard toad search and rescues must be conducted prior to construction of any subsequent phases，with reseued animals placed in the main ecological corridor（assuming that it is adequately established）or other nearby suitable safe refugia；

Landscaping of the remaining two minor east－west corridors across the site must take place once the adjacent development platform is in place－again，the corridors would need search and rescue activities；

Both the aquatic specialist and the faunal speciallst should have ongoing input into planning and implementation of the construction process，and particularly the phasing of activities
 migration through the site．The toads would require unrestricted migration and dispersal options between breeding wetlands and shelter／foraging habitats，and protection rom
vehicular traffic during the breeding season－but as long as the latter is restricted to daylight

Canal rehabilitation and creation of the ecological corridor must take place within the first
summer after construction commences； summer after construction commences；
Infill and rehabilitation of the natural tie

Infill and rehabilitation of the natural Liesbeek channel should take place in summer，once
the main corridor and rehabilitated river course have been established，and no longer than one wet season after completion of the canal and corridor．
－Alternative 2：
In the event that this alternative is authorised，the same activities outlined above would be required， with the exception that rehabilitation of the natural channel should be prioritised over the minor
beautification activities required for the canal． beautification activities required for the canal．

Table 5,9 provides a more formal assessment of the impacts described above，with and without
mitigation．The table shows that，without mitigation，both Alternatives are llikely to result in falties to western leopard toad populations on the site \｛as well as other fauna）．These impacts are unlikely to be large－scale and likely to be of medium intensity only，given the proposed phasing plans and the fact that western leopard toads emerge mainly at night．

With mitigation，the intensity of impact can be reduced，although some level of impact remains probable．
Proposed redevelopment of the River Club, Observatory:
Envionmental Impact Assessment: Blodiverity

Proposed redevelopment of the Rtver Ctub, Observatory Environmental inmpact Assessment: Bfodtuersity

xiv.	mesh fencing - such fencing must however include holes slzed to allow faunal passage through the fences, unless otherwise required (e.g. during rehabilitation of the Lesbeck Canal) - holes 30 cm high x 20 cm wide at 5-10 m intervals should be created. Alternative approaches such as use of a simple temporary pole fence, with cross-beams could also be used, as these would allow faunal connectivity (f.g. during Uesbeek Canel rehabilitation works); - they would however need adaptation during periods when faumal access needed to be prevented A detalled Construction Phase Environmental Management Programme (CEMPr) must be drawn Up, outlining inter afia the required sequence of phased activitios - the details of thls plan would require careful Input from the blodiversity as well as the civils and landscaping teams. The measures inchuded also take cognisance of the additional measures outlined in Section 6 . in this report as Construction-Phase mitgation should be included in such a document, which should native 1:
$x \mathrm{v}$.	During canal rehabilitation, safe faunal connectivity between the open space north of the site, and the natural uesbeek channel must be maintained -this can be achleved

corridor to reach the Rapenberg wetlands;
Rehabilitation of the Rehabilitation of the Black River corridor (see mitigation in Section S.1.8) in the vicinity of the new
bridge wouid need to take place after rehabilitation of the canal, and after construction of the new
proposed Berkiey Po xvii. The main east-west ecological corridor must be landscaped during would be functional; vear of completion of landscaping of the rehabilitated Canal. The rehabilitated cortidor must tie into the natural Llesheek channelarea, but should inititally be fenced off from the area, during construction, Und allowed rather to link into the rehabilitated canal corrtfor, lesding to the Raapenbere wethands, if with fencing to prohibit toad passoge through this ares, prior to the start of construction activities
in the
 east-west corridor (assuming that it ts adequately established) or other nearby suitable safe refugia;
infili and rehabilitation of the natural Lies beek channel tiould take place in summer Western leoppard toad search and rescues must be conduched; phases, with rescued animals placed in the main ecologital corridor (assuming that it is adequately
established) or other nearby suitable safe refuein: Landscaping of the remaining two minor east-west corriders across the site must take place once the
adjacent development platform it in place-again, the corrtdors would need search and recal dors would need searci and resa Both the aquatic specialist and the faunal speciallst should have ongoing input into planning and
implementation of the construction process, and partloulariy the phasing of activities and the rationate for connecting and disconnecting different, parts of the open space arees to ensure both protection of
western leopard toads and allow their safe breeding and migration through the site. The toads wouid require unrestricted migration and dispersal aptions botween breeding wetionds and sheiter/foraging
habitass, and protection from vehicular traffic during the breeding season - but as long as the restricted to dayltght hours, thls aspect would generally not be an issue (M. Buras long as the latter is
Canal rehabilitation and creation of the ecological corridor after construction commences
Infilit and rehabilitation of the natural Llesbeek channel Infill and rehabilitation of the natural Llesbeek channel should take place in summer, once the matn
corridor and rehabilitated theer course have been established, and no longer than one wet season after
completion of the completion of the canaland corridor.
Alternatlve 2:
in the event that this ahernative is sutherised, the

妾

and pumping at the weir, into the former Lestbeek channel, and /or could include diversion past the proposed rehabilitation coursere. Of these, the latter would ining or trenching flows natural channel on a short term basis, potentially, we later would Increase flows into the natural channel on a short term basis, potentalaly flushing sediment and improving aeration -

Proposed redevelopment of the River Club, Observatory: Envifonmental Impact Assessment: Blodiversity

 Essential mitigation measures

The following impact mitigation measures are considered essential from an aquatic ecosystems perspective:

Construction activities involving excavation into any river or canal bed and banks must be flooding, but ideally also outside of the dry season when there should be least risk of of opportunity is between December and May of any year. The timing of this could be less restrictive in terms of western leopard toads, provided that adequate measures are in place to 1) prevent/limit toad mortalities associated with construction activitles and
vehicular traffic, 2) maintain toad migration/dispersal corridor options, vehicular traffic, 2) maintain toad migration/dispersal corridor options. The details of the creation of toadlet collection traps upslope of the excavated liesbel could include where retrieval and relocation can take place where retrieval and relocation can take place;

A comprehensive construction phasing plan must be drawn up, in collaboration with the engineers and the landscape wetlands) specialists, the civil engineering team, the design the start of the project, and should take into account, or effectively mitigate against, the concerns of the biodiversity specialists;
iii. Detailed method plans for general watercourse construction and flow diversion and these should shepared as part of the detailed design phase of the development, and these should show how downstream sedimentation and/or turbidity would be
avoided in design; avoided in design;
iv. Allowance must be made for emergency rehabilitation of any aquatic ecosystems that are Raapenberg wetiands, in which iocted as a result of flood flows - this would include the under circumstances where sedimentation from flood damage during construction is deemed problematic by the aquatic specialist; Deliberate diversion of flow from the Llesbeek
not take place $-{ }^{25}$ the existing channel excavated into the we Raapenberg wetlands may deally be infilled prior to the start of any construction activities in the canal;

Given that the chennel lies outside of the preponent's property and was moreover not constructed by the
proponent or the River Club, its removal cannot be a requirement of this project. It is however a strong
recommendation that this channel be removed /infilled
The Freshwater Consulting Group Page 107 Ver 6: November 2019
5.2.2. Water quality ond habitat deterioration as a resulf of diversion of river (Black River and
Lesbeek Canal) and wettand (naturat Llesbeek channel) flows during construction
Impact description

Proposed redevelopment of the River Club, observatory: Environmental Impact Assessment: Blodiversity							
$\begin{gathered} \text { AlT1 } \\ \text { Mitigution } \\ \text { mitigion } \end{gathered}$		$\operatorname{Low}_{1}^{1}$	$\begin{gathered} \text { Medium } \\ \text { term- } \\ \text { thfocting } \\ \text { Endongered } \\ \text { specces } \end{gathered}$	$\underset{\text { Low }}{5}$	Probatie	$\begin{aligned} & \text { (Now } \\ & \text { Leng. } \end{aligned}$	Medum
$\begin{gathered} \text { ATV2 } \\ \text { MWth } \\ \text { Mitgation } \end{gathered}$		${ }_{\text {Low }}^{1}$	$\begin{gathered} \text { Medium } \\ \text { terfur } \\ \text { Enfocting } \\ \text { Endanged } \\ \text { species } \end{gathered}$	$\begin{gathered} 5 \\ \text { Low } \end{gathered}$	Probable	$\stackrel{\text { low }}{\text { LNe.). }}$	Mmatym

Construction of bridges over the Black River and Liesbeek channel / landscaped swale area and and (in the case of the liesbeen Canal (Alernative 1) would all require full or partial diversion of river and (in the case of the Liesbeek channel) wetland flows. The results of flow diversion would be likely
to include the following:

Black River impacts: localised temporary loss of riverine habitat would be likely in sections of the river under active construction, where it is assumed that temporary coffer dams would be created to allow works in the river to proceed. Given the temporary nature of the impact and the degraded condition of the affected environment, the impact would be of low significance, although the system would be vulnerable to more extensive damage in the event of high flows;

Liesbeek Canal impacts: wholesale diversion of flows from the Liesbeek canal is assumed to
be required during canal rehabilitation works, be required during canal rehabilitation works, and during this period (likely extending over a few weeks to monthsl river function in the canal area would be suspended. Given that river
function in the canal is at best limited this the event that construction overlaps with storm or floodflows, diversion might however bo ineffective, resulting in damage to landscaped / shaped areas and the passage of however be sediment into the Black River downstream. If even medium sized flood events 0.5 - 1 your return intervall or greater occurred in the river, the transport of volumes of sediment into the adjacent Raapenberg wetlands could occur, resulting in degradation of this wetland as a result of receipt of volumes of sediment. Such events would also increase sedimentation into the Black River, increasing turbidity and increasing the extent of shallow sand bars sthe latter encourage wading birds such flamingos but have the indirect effect of increasing dredging
frequency in the channel; frequency in the channel;
The mechanism of diversion Impact description 0

0
${ }^{\circ}$

Proposed redevelopment of the River Club, Observatory:
Environmental impact Assessment: Blodiversity
vi. Early establishment of a good quality of plant cover (80% cover by end of first year, with
a high diversity of indigenous plant species, as selected in collaboration with the botanical
and aquatic specialists) is essential in all landscaped open space areas, and particularly so
for those prone to erosion (e.g. wet season channel and edge of low flow channel in the
rehabilitated canal and landscaped swale (Alternative 1) or the remediated Liesbeek
channel (Alternative 2);
vii. Construction of the cuiverted road crossing over the landscaped swale should be timed to
synchronise with other landscape and construction activities in this area (see Section 5.2.I
mitigation).
Table 5.10 provides a more formal assessment of the impacts described above, with and without
mitigation.
Table 5.20
Significance of water quality and habitat deteriotation as a result of diversion of river 〔Black River
Significance of water quality and habitat deterioration as a result of diversion of river (Black River
and Liesbeek Canal) and wetland fnatural Llesbeek channelf flows during tonstrurtion

 leopord tonds, provided that adequate measures are in place to 1) prevenet/himit toad mortalities soridor options. The detalls of such measures woukd need to be worked out with the faunal
specialist, and could indude the crestion of toadiat colliction traps upsiope of the exeavated iesbeek cenal, from where retrieval and relocation can take place; Acomprehensive construction phassing plan must be drawn up, in collaboration with the faunal and landscape taam - this would need to be drawn up well in advance of the start of the project, and
 Allownence must be mado for emergency reharablititaton of any anguutic ecosystems that are accidentalily (or otherwiscol impacted as a result of flood flows - this would include the Raapenberg
wetlands, in which careful manual removal of sediment may be requsired under circumstances where
sedimentation sedimentation from flood damage during construction is deemed problernatic by the aquotic
specialist;
Delfberate diversion of flow from the Llesbeek canal may not take place into the Ranpenberg
wettlands. The existing channel excavated into the wetland from the cranal should ddeally also be

Construction of the culvertod road crossing over the landscaped swate should be timed to
synctronise with other tondscape and construction activties in this area (see Section 5.2 .1
mitigation).
The Freshwater Consuting Group
Proposed redevelopment of the River Club，Observatory：
Environmental Impatt Assessment：Blodiversity
5．2．4．Disturbance of wotercourse bed and banks during infrastructure installation
The proposed development includes sewers，patable water pipelines and likely various telecommunication and electricity cabling etc．None of these would however be passed directly into
 passing under or lhrough the landscaped swale／natural Liesbeek channel area．
Passage of services through this area，assuming this happening after infilling and landscaping
（Alternative 1）or after landscaping（Alternative 2）would result in aquatic and other habitats with low sensitivity to disturbance．The significance of these impacts would be low．
Best practice measures would need to include rehabilitation of areas disturbed by excavation and

Table 5.12 provides a more formal assessment of the impacts described above，with and without
Table 5.12
Significance of Disturbance of watercourse bed and banks during infrastructure instaliation

$\frac{2}{8}$	$\begin{aligned} & \text { E } \begin{array}{l} \text { 帚 } \end{array} \end{aligned}$	$\frac{8}{2}$	気
$\frac{\dot{5}}{5}$	言 3 高		
$\frac{5}{8}=\frac{8}{4}=\frac{8}{8}$		各 品 咅 혐	
$\frac{8}{8}$	－${ }_{5}^{\frac{3}{5}}$		${ }^{\frac{3}{\frac{3}{2}}}$
है	\sim～喜		－言
$\stackrel{3}{5}$	\cdots		－

Proposed redevelopment of the Rtver Club，Observatory：
Environntental Impact Assessment：Blodiversity
f．Outline construction platform access roads，so that ecological corridors and sensitive
areas are not disturbed－atcess road should be clearly demarcated on site； Ecological corridors，designated buffer areas and other sensitive areas（e．g．the edge of the Raapenberg wetlands abutting the site）must be clearly demarcated as no go areas prior to the start of construction；

The timing of all works involving active disturbance of river beds and／or banks should be such that the active works take place in the dry season months as far as possible．This will reduce but not avoid the possibllity of damage from floods．

Allowance must be made in project contingency planning for the high llikelihood that planted
／newly landscaped areas might require re－doing，in the event of significant flooding．
Allowance must be made for the rehabilitation of any disturbed areas that are part of the ecological buffers or corridors；

An adequate waste management programme must be developed and implemented， allowing for regular collection of litter and other waste on site，the provision and management of adequate temporary toilets on site and the removal and legal disposal of
building waste fe．g．removed sections of the Liesbeek Canal！．

Table 5.11 provides a more formal assessment of the impacts described above，with and without

> Table 5.11 Significance of Degradation of downstream habitat in the Lesteek Canal, lower natural Lesbeek channel and Blark River from activities other than flow iliverto

$\begin{aligned} & \text { Nature } \\ & \text { of } \\ & \text { mpott } \end{aligned}$	Extent of impost	Intersity	Dimbition of mpoct	Construinee		Stand．	cempd
Both Alternatives Whthout Mitigation	${ }_{\text {Local }}^{2}$	$\underset{H_{\text {Hgh }}^{3}}{ }$	$\underset{\substack{\text { Modlum } \\ \text { term }}}{2}$	$\begin{gathered} 6 \\ \text { Medfurn } \end{gathered}$	Probabie	$\begin{aligned} & \text { Medium } \\ & \text { (Neg.) } \end{aligned}$	Medum

vulineabe to water－or wind－transport tnto aquatic ecosystems；
Define areas for the storage of vehicles，fuel and other building materiats within the Define areas for the storage of vehicles，fuel and other building materitss within
development platforms－no stockpple or storage areas are to be allowed within 20 of the
outcr edge of any designated buffler area or ecologkes corridor－the only exception to the utter edge of any designated buffer area or eccologicol corridor－the only exception to the
bove would be the termporany stockpiling of topsoil，mulch and plants specfically required for
the landscaphg of these areas：
c．Include requirements for bunding of fuel storage arcass
d．Specify areas where concrete／cemment can be safely stored and／or miked，in phase with
d．differant dovelopment phases on the site：；

actlve works toke place in the dry scoson months as fer as passibic．This will reduce but not avoid the
possiblliy of damage from floods．
The freshwater Consulting Group
5.3. Operational phase impacts

This section |dentifies and assesses key operational phase impacts on biodiversity and aquatic ecosystem functioning that could dffect the capacity of the implemented alternative to meet its
expected long term biodiversty and/r aquatice cosystem functionaza objectives. expected long-term biodiversity and/or aquatic ecosystem functional objectives.
5.3.1. Degradation of habitat quality or failure to realise opportunities for improved habitat
quality and biodiversity consenvation / improvement as a result of inadequate or illadvised channel and open space maintenance activities
Problematic maintenance measures would include any of the follow

- Long-term simplification of planted vegetation swathes through the main ecological corridor shrubs and other indigenous vegetation minor for major)
- Allowing faunal culverts to block, over-grow or be cut off from their linking corridors by waste, vegetation or deyelopment edge expansion,

Expansion of grassed areas into the riverine corridor at the expense of areas of indigenous
riverine plantings; riverine plantings;
Re-landscaping /
longitudinal cover
longitudinal cover and habitat to western leopard toads and other indigenous fauna (e.g. chameleons) - as a guideline, at least 40% of the main ecological corridor should be managed
as indigenous planted corridor habitat, without lawn or pathways (see Section 5.1 .4 mitigation);

Encroachment of development activities / impacts into the riverine and landscaped swale (Altemative 1) or remediated Liesbeek channel (Alternative 2) and/or the ecological corridors

- examples of encroachment would include increased hardening of these areas, and the establishment of additional paved seating areas or the construction of fences within or
through buffer areas; through buffer areas;

Incision and channefization of the low flow channel in the rehabilitated Llesbeek canal as a
result of mechanical excavation / removal of reeds and/or sediments from the low flow channel

Inadequate attention to the ongoing need for removal of alien and other weedy plant species,
particularly from recently disturbed / newly established areas. Invasion of river margins Commelina benghalensis and /or purple loose-strife is a signlficant risk to the long-term establishment of high quality riverine habitats, and there is a plethora of other alien plants (e.g. nasturtium, morning glory, various woody aliens), that would establish in these areas
unless specifically managed. Invasion of the river channel by water hyacinth (Elcchornia crossipes) is also a reality that must be managed on an ongoing basis;

Access to sensitive areas by increased numbers of people - e.g. Raapenberg wetlands. This
impact is unlikely, as the wetland would be separated from the development by the
rehabilitated canal (Alternative 1) or the canal (Alternative 2). In the former case, it is however
possible that, during low flows, increased informal access to the wetlands could take place, in
which case there would be an increase in disturbance of wetland birds, as well as increased
trampling and general wetland disturbance;
Increased disturbance to natural habitats and
a result of increased numbers of domestic dogs and cats in residential and /or recreational
areas of the develo areas of the developmen
ssential mitination measures
The following mitigation measures must be applied:
The Freshwater Consuting Group

Propased redevelopment of the River club, Observatory: Environmantal

An Operational Phase Environmental Management Programme (OEMPr) must be compiled
and used as the framework against which and used as the framework against which long-term management activities on the future The OEMPr should draw information and specifications inter alio from the present report;
a. the ecological / biodiversity issues and objectives inherent in the design and
the location, extent and role in the development of ecological corridors, swale;

$$
\begin{aligned}
& \text { swale; } \\
& \text { the sensitivities of these areas; } \\
& \text { the management objectives for a }
\end{aligned}
$$

the management objectives for all of the above areas;

The OEMPr should be finalised on completion of the development, but its basis should be the ecological planning and layout inputs that have informed this assessment;
The additional design and implementation measures outlined in should implemented;
indicating the position, dimensions and annotated plan of the development area, clearly During the detailed design phase of the development, the OEMPP should be reformulated with input from the aquatic ecologist and faunal specialist) into a detailed Property Owner
Assotiation (or similar designation) Management Guideline, tlat
 addressing the following issues, including timing, frequency, methods, and no-go
approaches: i. Such activities should always require
Such activities should always require clearance from an aquatic ecologist
as to need and desirability
 water level;
 аq pinoчs spaas גәчғел - uо!
 feasible; such swathes could be alternated in different sections of the
channel in subsequent years; Channel in subsequent years;
iv. Cleared reeds should be removed from the channel
b. Clearing of water hyacinth from the channel
i. Ideally, removal of this weed should take pione

1. Ideally, removal of this weed should take place at a catchment level - this
was achieved by the City in the Lotus River / Zeekovlei catchment with
major success, and could Liesbeck catchment;
ii. Within the river reaches past the River Club site, clearing of hyacinth
would need to be managed using manual labour excavators or other machinery likely to disturb / dactrov the intrusion by gently graded river margins. Such measures would need to be undertaken in low flow conditions only, when there is safe access into the
channel. Although there should be flexibility abot the actual channel. Although there should be flexibility about the actual removal
method, to allow for innovative approaches, water hyacinth could be
Proposed redevelopment of the River Club, Observatory:
Environmental Impart Assessment: Biodiversity
floated up-or downstream in the channel to a single point where there is
access from the side, for the collection ond removal of the weed
access from the side, for the collection and removal of the weed.
Flotation into the Black River and collection from there could also be
considered; of sediment build-up in the channel
Sediment removal should not take place more frequently than every five
years, and then only when necessary because of significant loss of
channel capacity;
If sediment is cleared, it could be removed mechanically, but the design
profile of the channel must be restored, and cleared areas replanted with original construction programme;
iii. Sediment clearing may only take place with approval from a river Sediment
specialist;
d. Maintenance requirements and management objectives for faunal culverts;
Design guidelines for open space areas, indicating clearly requirements for ecological connectivity to be created by indigenous planting templates, the extent g. Information regarding the design and function of toad barriers;
Guidelines for the removal of key invasive alien plant species - these would require updating as new species emerged and new control methads (e.g.
biocontrols) are developed -approaches for the control of purple loose strife are 1. Access control guidelines should be included, and should consider the need for access to the Raapenberg wetlands to be controlled, while ad hoc access across the Liesbeek cana! should ideally not be permitted. This said, the educational and possible conservation benefits of linking urban developments to urban wildfowl areas should be considered. Opportunities to instalf bird hides
and improve on-site bird habitat quality (e.g. perching trees) should be and improve on-site bird habitat quality (e.g. perching trees) should be
encouraged;
Requirements to increase the accersibility of Requirements to increase the accessibility of the Raapenberg wetlands for an
increased local human population / community would need to be carefuily considered, and in the short term it is recommended that the wetland should be protected from such access by a permeable fence, that allowed for the passage of small wetland and wetland-associated fauna (toads, otters, porcupines)
through gaps in the fencing, while limiting uncontrolled human access, as weil as
k. Given the proximity of the development to a bird sanctuary and breeding areas be controlled, so that disturbance to exarcising of dogs in open spaces should ne controlled, so that disturbance to natural fauna and habitats as a result of
nese open spaces does not occur. The keeping of cats should Both the faunal specialist and the aquatic ecologist involved in the evolution of the development layouts assessed in this document should have input into the final OEMPr and
the Property Owner Association Management Guideline, to ensure that the intention of the the Property Owner Association Management Guideline, to ensure that the intention of the
Proposed redevelopment of the River Club, Observatory:
Envifonmental Impact Assessment: Blodiversity

Proposed redevelopment of the River Club, Observatory:
Environmental Impact Assessment: Blodlversity

- Stormwater runoff poilluted with heavy metals and hydrocarbons from roads and parking outlines however a stormwater management plan that includes systems - Aurecon (2017b) low flows through stormwater swales and/or enhanced bioretention systems, and into a series of wet ponds located in open space areas;
Irrigation of private and public open spaces with Irrigation of private and public open spaces with treated sewage effluent;
Irrigation of private and public open spaces with domestic grey water;

Discharges of chlorinated or salt water from swimming pools - chlorine from pool water discharges forms conservative, highly toxic chloramines in water with elevated ammonia
concentrations (such as the black River at times). concentrations (such as the Black River at times).
Sustained low-level pollution from the above source

Sustained low-level pollution from the above sources would potentially contribute to ongoing
eutrophication of the lower Liesbeek Rlver and natural channel downstream of the development encouraging the growth of aquatic weeds and other vegetation and indirectly increasing the need for maintenance measures associated with high levels of aquatic ecosystem disturbance. While
the Black Rlver would show low sensitivity to such impacts, given its current high levels of nutrient the Black Rlver would show low sensitivity to such impacts, given its current high levels of nutrient
concentrations, the discharge of additional pollutants into the river runs counter to the urgent need to improve water quality in this system to more ecologically sustainable levels (i.e. PES
Category D or better). Category D or better).

Periadic high flows of contaminated water that enter water courses cauld result in episodes of acute toxicity - such inflows would however be most likely to be associated with sewage leaks / overflows, unless they stemmed from illegal discharges of seriously contaminated water. IN the
case of the former, preventative design mitigation measures have alrcady been implemented as far as possible to address and contain pump failure impacts at source, and large scale overflows are considered possible but unlikely to occur at a level where they will cause ecosystem failure. Essentiol mitination measures

Treated sewage water should not be used as a source of irrigation water, unless additional treatment occurs to reduce phosphorus and total ammonia concentrations;

Sewer manholes in all open space areas should be readily visible, so that overflows can be easily detected and reported.

If greywater irrigation is used, it should not be used within any of the riverine corridor buffer areas, which are intended to actively protect adjacent watercourses form development-
swimming pool effluent, if any, must be passed into the sewers and not discharged of overland, into the water table or into the greywater or stormwater systems;

Landscaping of all open space areas and private gardens must use indigenous, waterwise plants. The planted riverine corridor (Alternative 1) or remediated Liesbeek channel phase, irrigation of as possible to reduce water demand. as possible to reduce water demand.

Table 5.14 provides a more formal assessment of the impacts described above, with and without mitigation. mitigation.

Proposed redevelopment of the River Club, Observatory: Envifonmental Impact Assessment: Biodiversity

Table 5.14 Slgnificance of the contribution to the deterioration							
	Extent of mypact	bitensty	Datration of inpoce	Consmuence	Probebifity of	5tan)	conflid.
Both Alternatives Without MAftration	$\stackrel{1}{1}$	$\underset{\text { Medium }}{2}$	$\begin{gathered} 3 \\ \text { Long term } \end{gathered}$	$\stackrel{6}{\text { Medium }}$	nccurrense Probable	Medium (Neg.)	Medium
Essentlol mitigation meosures							
	Treated sewage water should not be used as a source of Irrigation water, unfess additional treatment occurs to reduce phosphorus and total ammonla concentrations; easlly detected and reported. Sewer manholes in all open space areas should be readlly visibie, so that overfiows can be If greywater irrigation is used, it should not be used within any of the riverine corridor buffer related impacts; areas, which are intended to actively protect adjacent watercourses form development- Swimming pool effluent, H any, must be passed into the sewers and not discharged of overland, Into the water table or into the greywater or stormwater systems; Landscaping of all open space areas and private gardens must use indigenous, waterwise plants. The planted riverine corridor (Alternative 1) or remediated Llesbeek channel (Alternative 2) must be planted such that, after the initial establishment phase, irrigation of as possible to reduce water demand. planted areas other than lawns is not required - the extent of lawns must be limited as far						
Both Afternatives with Miligation	$\begin{gathered} 1 \\ \text { Local } \end{gathered}$	$\begin{gathered} 1 \\ \text { Low } \end{gathered}$	$\begin{gathered} 3 \\ \text { Long term } \end{gathered}$	Low	Probable	$\xrightarrow{\text { Low }}$ (Neg.)	Medturn

5.4. Cumulative impacts

The cumulative effects of development of the River Club site are probably best assessed with regard to the proposed Two Rivers Urban Park (TRUP) development, which could potentially result in further non breeding habitat for western leopard toads could increase in the fuct as loss of terrestria terrestrial habitat on the current site more significant. Given the current low quality of sue loss of from a faunal perspective, this point is however debatable, particularly in the context of the improvement in terrestrial habitat quality almed at in the landscaping and management of the ecological corridors through the site. Moreover, in the context of ongoing development, from an aquatic ecosystems perspective, the proposed development of Alternative 1 would include a
significant positive impact in the improvements in aquatic ecosystem fumction and ecological connectivity could offset cumbuch impacts of development in adjacent open space areas.

Increasing development of the surrounding area (e.g., increased traffic including from the planned SKA office) could arguably also increase pressures on western leopard toads by increasing mortalities on migrating toods southwards, across Observatory Road and into the open spaces associated with
Valkenberg and the Liesbeek Lake area. An important strategic means of mitiga
pipeline to allow the movement of western leopard toads south, into the open space of Liestee wide and Valkenberg. Authorities charged with authard toads south, into the open space of Liesbeek Lake .
Proposed redevelopment of the River Club, Observatory:
Envitonmental Impact Assessment: Blodiversity
cognisant of such cumulative impacts and ensure that such concerns are adequately addressed in adjacent site development conditions of authorisation, including provision of safe migratory corridors
under roads, and in (ideally) the expansion of the rehabilitated Liesbeek Canal all the way past the SKA under roads, and in (ideally) the expansion of the rehabilitated Liesbeek Canal all the way past the SKA
site, as far as Observatory Road.
impacts associated with the no-development altemative
In the event that the development proposals considered in this report did not take place, it is assumed that the following factors would be in place:
The Liesbeek Canal would remain in situ -but would be likely to require repair in the near
future;
stormwater into the Black River. Ongoing removal of allen vegetation (e.g. water hyacinth) would be required, but the channel might provide breeding habitat to western leopard
toads; toads;
The terrestrial open spaces of the River Club would remain undeveloped and patentially associated with the driving range for Western Leopard toads -however, ongoing activities continue to hamper the ecological wellbeing of this species as would physical barriers to migration such as the Liesbeek Canal.
Proposed redievelopment of the River Club, observatory:
Environmentel tmpact Assessment: Blodiversity

Table 5.15 provides coarse comparisons of changes in different open space / natural areas on the site assumes that the site is currently undetives. Loss of terre that no terrestrial habitat on the site has conservation value (i.e. not rated as terrestrial Critical Biodiversity Areas (CBAs) or Ecological Support Areas (ESAs)). Biodiversity Areas (CBAs) or Ecological Support Areas (ESAs)).

5.5. Summary of impacts from a biodiversity perspective This section provides a brief overview of the changes / losses / impa
 5.5. Summary of impacts from a biodiversity perspective

This section provides a brief overview of the changes / losses / impacts to natural ecosystems as a result of implementation of the proposed project alternatives. The information presented here is
intended to inform specific aspects of the NEMA EIA information requirements. intended to inform specific aspects of the NEMA EIA information requirements.
opportunity to rehabilitate the Liesbeek Canal. Without development funding, it is extremely unlikely that this boid approach would ever be affordable. $\sqrt{1 /}$

roposed redevelopment of the Rlver Club, Observatory: Environmental impact Assessment: Biodiversity

 6 addmional recommendations to include in development outcomesAssuming mitigation measures are applied as recommended in Section 5 , the two alternatives both have the potential to provide an improved quality of aquatic ecosystem, either the rehabilitrated conal (Altermative 1) or the remediated natural Liesbeek channel (AAlernative 2). Both include enough space trom a floral or faunal perspetive, other than with regardst to terestregat vely on areas of concern endangered westem leoppard toads. Some of this habitat would be lost in beeding habitat for attermatives, and a critical component of development desigin and enhanancement mitigation is the creation of terrestrial habitat that is of a quality that will a atively improve the longevity and resilience of western leopard toad populations on the site.
Allowing for the mitigation meassres outlined in this report, both the altematives would, overall, be assessed as having anet positive or at teast neeigibible enegative biodiversity impact, with altermative 1 opportunities for river refehabilitation with which intits associstaed
however, there remains a isk that, despite the theoretcical evaluations of such positive impacts, the final outcomes might not in fact be as positive as envisgeg. Reasons for this might include:
Failure in landscaping implementation - many of the design details and some of the mitigation measures outined in this section rely on the reallsation of sometimes quite subtle landscape
design aspects, some of which may be lost in translation between the compilation of this report wth its design assumptions net istigation requirements. Another important tactor
affecting the degree to whict the lad affecting the degree to which the landscape outcomes envisaged in this document can be implementation would be a critical determinant of many of the required ecolised for project
 be atie to achive the natural fffects along the iver channel and ecological corridors that
Under-estimating the scale of intervention - the proposed rehabilitation of the Liesbeek Canal and infilling of the natural channel (Alternative 1) would be significant interventions and their as provision of a flow corridor of adequate width to contain the river without dethe need for channel lining, and without creating an unstable eroding environment;
Under-estimating the construction and lang-term operational cost
maintalining function of the planned landscape-term operational costs of creating and and maintenance of sufficient plants in the ecological corridors and rehabilitated riverine or thainnel areas, these zones would not perform as high quality habitat types.
This issue, although somewhat philisosophical, is an inportant consideration, as it hightights the likely difference betwen Alternative 1 achieving a river with a PES of Category D, versus sit planned
potential category C class, and between a real improvenent in potential category C class, and between a real improvement in channel habitat quality in Alternative
2, versus superficial landscaping and amelioration.

Proposed redevelopment of the River Club, Observatory:
Environmental Impact Assessment: Blodiversity
Reshaping of the Black River (left hand bank) to the aquatic specialist's specifications -
where banks are considered too steep, allowance must be made for their rearding and where banks are considered too steep, allowance must be made for their regarding and appropriate planting;
iii. Installation of the lower gabion $/ 300 \mathrm{~mm}$ reno mattress on the right hand canal wall at a lower level still, so that the top of the gabion is no higher than the wet season baseflow level and preferably slightly lower. Such a level would allow for the establishment of plants such as palmiet (Prionium serratum) along the edge of the channel, providing a degree of velocity abatement along the edge of the channel and reducing the otherwise
visual and ecological sterility of this side of the channel. Palmiet currently occurs in the river in its foothill reaches near Kirstenbosch and is likely to have accurred in the low salinity lower reaches of the river as well;
iv. Widening of the ecological component of the rehabilitated river profile where possible to provide a wider rlverine corridor with likely greater resilience against flood impacts such as erosion and more space in which to address these -thus where the open space corridor opens out e.g. between the two precincts, in the vicinity of the east- west corridor link,
the portion of the corridor vegetated as a natural riverine corridor should be expanded at least in proportion to the expansion of open space areas, and at least in places, the indigenous edge should be pulled out as far as the lower pathway. This would also simplify maintenance of these areas, as the line between the indigenous riverine edge and the recreational zone would be clearly defined by the pathway;

All river shaping and planting activities must have onsite input by the aquatic specialist
/river ecologist and should include on-site inspections / discusslons with the faunal specialist.

- Alternative 2:

Ideally, Alternative 1 should be selected, from a biodiversity and (in particular) the perspective
of improving river function. However, the treatment of the canal in Alternative 2 is
ecologically acceptable, in that it would not change the current status quo of the canal from a
biodiversity perspective, and additional mitigation is not considered essential.
 Proposed redevelopment of the River Club, Observatory:

Environmental Impact Assessment: Biodiversity
 $$
\begin{aligned}
& 8 \text { MONITORING } \\
& \text { In the event that the proposed development of the River Club site is approved, the following } \\
& \text { monitoring measures are recommended as essential, and the monitoring outcomes should be fed back } \\
& \text { into routine site audits, and used to adapt management approaches as necessary. } \\
& \text { The monitoring programme should be kept as simple as possible, to reduce costs and ensure rapid } \\
& \text { turnover of data. The following aspects are recommended for inclusion: } \\
& \text { - Alternative 1: Assessment of Improvement in river condition / functioning based on sAsss } \\
& \text { bio-assessment results - strictly speaking these assessments assess water quality, but they } \\
& \text { are influenced by habitat diversity and as such can provide a gauge of change in the latter - } \\
& \text { quarterly assessments are recommended over a period of five years, with pre-development } \\
& \text { monitoring required for comparative purposes; } \\
& \text { - Western leopard toad monitoring: It is recommended jas per the faunal specialist's } \\
& \text { recommendations) that a western leopard toad management and monitoring programme be } \\
& \text { drawn up for the proposed development. Ideally the monitoring should start at least one } \\
& \text { breeding season prior to commencing with the construction phase, and continue up until five } \\
& \text { breeding seasons after construction has been completed. The- main aims of this monitoring } \\
& \text { would be to evaluate the success and efficiency of faunal dispersal corridors, ecological } \\
& \text { shelter/foraging sectors, new breeding habitat, and the toad-friendly infrastructure. } \\
& \text { Monitoring details should be formulated in the detailed design phase of the project, taking } \\
& \text { cognisance of the authorised alternative. As part of this monitoring programme, the issue of } \\
& \text { salinity and breeding sites in the Raapenberg wetlands (as queried in Section 3.1.8) should } \\
& \text { also be investigated; } \\
& \text { Avifaunal monitoring: } \\
& \text { Monitoring of bird populations on and associated with the site has been recommended by the } \\
& \text { avifaunal specialist, in order to track planned improvement in habitat diversity and quality. }
\end{aligned}
$$
 \title{

8 MONTORING
 \title{
8 MONTORING

 In the event that the proposed development of the River Club site is approved, the following

 In the event that the proposed development of the River Club site is approved, the following monitoring measures are recommended as essential, and the monitoring outcomes should be fed back monitoring measures are recommended as essential, and the monitoring outcomes should be fed back into routine site audits, and used to adapt management approaches as necessary. into routine site audits, and used to adapt management approaches as necessary.

 The monitoring programme should be kept as simple as possible, to reduce costs and ensure rapid
turnover of data. The following aspects are recommended for inclusion:

 The monitoring programme should be kept as simple as possible, to reduce costs and ensure rapid
turnover of data. The following aspects are recommended for inclusion: - Alternative 1: Assessment of improvements in e following aspects are recorded for inclusion: - Alternative 1: Assessment of improvements in e following aspects are recorded for inclusion:

 Alternative 1: Assessment of Improvement in river condition / functioning based on SASS5

 Alternative 1: Assessment of Improvement in river condition / functioning based on SASS5 are influenced by habitat diversity and as such can provide a gauss water quality, but they are influenced by habitat diversity and as such can provide a gauss water quality, but they quarterly assessments are recommended over a period of five years, with pre-development quarterly assessments are recommended over a period of five years, with pre-development monitoring required for comparative purposes; monitoring required for comparative purposes;

 - Western leopard toad monitoring: It is recommended (as per the faunal specialist's

 - Western leopard toad monitoring: It is recommended (as per the faunal specialist's drawn up for the proposed development. Ideally the monitoring monitoring programme be drawn up for the proposed development. Ideally the monitoring monitoring programme be drawn up for the proposed development. Ideally the monitoring should start at least one
breeding season prior to commencing with the construction phase, and continue up until five drawn up for the proposed development. Ideally the monitoring should start at least one
breeding season prior to commencing with the construction phase, and continue up until five breeding seasons after construction has been completed. The main alms of this monitoring breeding seasons after construction has been completed. The main alms of this monitoring would be to evaluate the success and efficiency of faunal dispersal corridors, ecological would be to evaluate the success and efficiency of faunal dispersal corridors, ecological shelter/foraging sectors, new breeding habitat, and the toad-friendly infrastructure. shelter/foraging sectors, new breeding habitat, and the toad-friendly infrastructure. Monitoring details should be formulated in the detailed design phase of the project, taking Monitoring details should be formulated in the detailed design phase of the project, taking cognisance of the authorised alternative. As part of this monitoring programme, the issue of cognisance of the authorised alternative. As part of this monitoring programme, the issue of salinity and breeding sites in the Raapenberg wetlands (as queried in Section 3.1.8) should
also be investigated; salinity and breeding sites in the Raapenberg wetlands (as queried in Section 3.1.8) should
also be investigated; - Avifaunal monitoring: - Avifaunal monitoring:

 Monitoring of bird populations on and associated with the site has been recommended by the
avifaunal specialist, in order to track planned improvement in habitat diversity and quality.
}

 Monitoring of bird populations on and associated with the site has been recommended by the
avifaunal specialist, in order to track planned improvement in habitat diversity and quality.
}

Proposed redevelopment of the River Club, Observatory: Environmental Impact Assessment: Blodivessily

9.1. Discussion of development alternatives

This report has assessed two development alternatives, both of which would be acceptable from an ecological perspective, since they both address the key concerns potentially associated with development of the River club site, namely:

The potential risks of development to the resilience of important indigenous fauna - in this
 and requiring safe migration routes through the site as well as access to both breeding and
non-breeding habitats;

- The likelihood of impacting negatively on adjacent watercourses and/or wetlands:

In the case of the River Club, both terrestrial and natural ecosystems aretiand) habitat quality.
suffered a long history of manipulation, including (in the case of aquatic ecosystems) having diversion, channelization, fragmentation and canalisation. Terrestrial ecosystems have been assessed by the faunal, avifaunal and botanical specialists as highly altered and affording very low levels of renosterveld communities including red data species did found on the site, although important Raapenberg wetlands. These communities were not however considered likely to beAD site and development of the River Club site.

Despite the level of infilling that would be associated with development of the site, the adjacent Raapenberg wetlands were shown by the hydrological assessment of Aurecon (2017a) to be unlikely to be impacted by changes in flood height, frequency or duration. Ironically, recent interventions by frequency are likely to bring about greater negative effect wetland function by increasing flood changes in hydroperiod than the proposed development. Both development alternatives have addressed, through
project team as a whole, issues such as ecological connectivity through the iterative design by the terrestrial habitat for western leopard toads, while including structural the site, and both provide landscaped refute western leopard toads, while including structural devices (toad barriers, culverts, other fauna on the site, which would be exp) to reduce moralities for this flagship species as well as landscape rehabilitation and remediation activities. of the two alternatives, from an ecological perse
preference for selection of Alternative 1. This alternective, there would however be a very clear canalised reaches of the lower Liesbeek River, and the hinges on the rehabilitation of the currently channel, that has sufficient space to function, and the planned creation of an unlined vegetated corridor, to establish adequate longitudinal and lateral linkages into natural a broad connecting riverine adjacent Raapenberg wetlands, and which would significantly improve faunal areas of the site and the migration routes across the site. Implementation of this alternative would from a comity and toad migration routes across the site. Implementation of this alternative would, from a biodiversity and

Proposed redevelopment of the River CCub, Observatory:
Enurionmental Impact Assessment: ilodiversity
seneral zquatic ecosystems perspective, be a nositive impact, and its implementation is
recommended.
This positive outcome has not however been rated as of high significance - this reflects the acknowledged risks of implementation, as well as the impacts to any sensitive natural ecosystems that would be assoclated with a development of the scale of the proposed River Club development. Against rehabilitation of the canal is also set the infiling and landscaping of the remnant (but historically fragmented and highly altered / diverted) "natural" channel of the Liesbeek River. This proposed development of vegetated swales in landscaped substantial river rehabilitation, and the by western leopren of vegetated swales in landscaped terrestrial areas suitable for colonisation without significant negative biodiversity or other ecological costs. Alternative 2 would nevertheless provide adenuate mitigation

Alternative 2 would nevertheless provide adequate mitigation against development-associated
threats, and would improve the existing (degraded and fragmented) aquatic habitat on the site. Selection of this alternative would however, in this author's opinion, result in a significant biodiversity opportunity cost that could not be realised in the future once development had occurred. A similar opportunity cost applies to the No Development alternative - without significant development funding, it is extremely unlikely that rehabilitation of the canal would ever be feasible.
9.2. Increasing the certainty that anticipated outcomes would be achieved

One of the problems in compiling this assessment was, ironically, the degree to which the development layouts had already considered ecological impacts, and addressed and incorporated these in layout and design. While the resultant layouts are thus largely acceptable in their current
form, two problems are presented with this approach: 3. Without medium or high neaative significance
difficult to motivate for the essential inclusion of additional subtle mitigation measures that would improve the final outcomes - this weakens the mitigation requirements;
4. If a layout is approved, there is a risk that some of the essential original mitigation thinking and approaches could be "lost", as it is not explicitly listed as mitigation.

- Including requirements for additional control measures aimed at improving uncertainty over the projected outcomes measures to be included in a potential development authorisation
(Section 6);

Including requirements for the development descriptions included in this report (Section 4) to be considered part of the approved design; and

Including requirements for the authorised (if any) layout to be worked up as a detailed, annotated plan with written dimensions and ecological specifications, to be used as an
auditable document going forward.

> Report provided by COASTEC
EXECUTIVE SUNMMARY
A botanical assessment of the South African Astronomical Observatory sites confirmed the presence
of Critically Threatened Peninsula Shale Renosterveld, although reatly disturbed confirmed the presence of clay-rich soils, typical of renosterveid. The flora of the site supports some 96 indigenous species.
Mapping of the site showed that renosterveld occuples some $2.2 \mathrm{ha}(23.9 \%$) of the site but that part is rare loam or shale wetlands. A simple comparison with the flora of Signal Hill suggest that this vegetation type is quite different from Peninsula Shale Renosterveld, particularly
with the presence of clay wetlands. with the presence of day wetlands.
The adjacent River Club site has no indigenous vegetation, being located on old fill material. Impacts deemed to be negligible. However, if local water level and inundation vegetation of the SAAO are deemed to be negligible. However, if local water level and inundation patterns are altered, them
there is a possilility the wetlands along the edge of the SAAO site could become negatively
Both the River Club and SAAO
Both the River Club and SAAO sites can play a key role in renosterveld conservation, through
rehabilitating presently disturbed sites on the $5 A A O$ proper renosterveld by bringing fill of a shale nature in the River Club development. Three conservation measures are proped fore tiver Club development.
Conservation action I
Conservation action I
Consolldate and revege
renosterveld habitats here. Firstiv, a specific conservation area needs to be identified on the SAAO
site and protected as part of the SAAO landscape and management pe to identified on the SAAO
vegetation will need the reintroduction of an emergent shrub layer as a basic minimum intervent
and which would grade into the existing thicket vegetation. Conservation action 2
Establish and rehabilitate links to the north and south along the Black River, possibly as part of the
current TRUP study. Conservation action 3
I understand that the proposed River Club development, if approved, would require the input of
much additional fill. Strategic selection of shale soil and overburden, much additional fill. Strategic selection of shale soil and overburden, perhaps from one of the substrate on the River Club site and wouid enable the extension of these hatialditional renosterveld River as well as within the River club site. A linkage between the two sites should also be
 Conclusion
The proposed development at the River Club is highly unlikely to impact negatively on the dryland is thus likely assured, provided acceptable conservation measures ally Endangered Moroea orlstato However, impacts on the renosterveld wetlands might be significant If inundation the SAAO site. altered by the proposed River Club development and present seasonality is compromised. —————134
Botanical specialists ecological anlalysis envion mental management

It is strongly recommended that all three conservation options are followed for the SAAO site and
joint initiative between the River Club and the observatory renosterveld should be supported by a

figures
Figure 1. Location of the South African Astronomical Observatory
Figure 2. Vegetation of the SAAO site
Figure 3. Conservation areas on the SAAO site
Figure 4. Vegetation and landuse for the River Club and the SAAO site
Figure 5. Original extent of Peninsula Shale Renosterveld
TABLES
South African astronomical observatory: vegetation and conservation

$$
\begin{aligned}
& \text { 4. FINDINGS \& DISCUSSION } \\
& \begin{array}{l}
\text { Quoting Van der Walt \& Strong (2010), she states that the site is underiain by sediments of the } \\
\text { Maimesbury Group (see Theron, 1984), with a resistant ridge of greywacke and sandstone. Based }
\end{array} \\
& \begin{array}{l}
\text { Maimesbury Group (see Theron, 1984), with a resistant ridge of greywacke and sandstone. Based } \\
\text { upon the soll analysis below (Table 1), I would suggest that the parent material more }
\end{array} \\
& \text { resembles shale, owing to the moderate clay content and the chemical nature of the soils. } \\
& \text { Nevertheless the sandy loams analysed in her study did indicate moderate to slight acidity (pH } 4.9 \text { to } \\
& \text { 6.9), with fairly high levels of silt, and a range in clay from } 7 \text { to } 9 \% \text {. } \\
& \begin{array}{l}
\text { In this study, analytical data from the seven topsoils sampled within the SAAO site are shown in } \\
\text { Tabies } 1 \text { (physical) and } 2 \text { (chemical). Both suites of solls indicate moderate aridit, a }
\end{array} \\
& \begin{array}{l}
\text { Tabies } 1 \text { (physical) and } 2 \text { (chemical). Both suites of solls indicate moderate acidity, a function of their } \\
\text { shale origin. There is a difference in texture between the two sites, with the substrate under thicket }
\end{array} \\
& \text { more sandy, a probable function of its proximity to the alluvial deposits of the river and wetlands to } \\
& \text { the north. The high presence of reasonable amounts of clay is significant as this is a key } \\
& \text { characteristic of shale soils, in particular those supporting renosterveld. There is a clear difference } \\
& \text { between thicket and open communities, with the former displaying higher amounts of total and Bray } \\
& \text { Cation exchange capacity (CEC) is also higher in the thicket site. Both carbon and nitrogen levels are } \\
& \text { generally closely correlated with CEC values, as are total cations. The soils are considered to be of } \\
& \text { moderate fertility, a key feature of renosterveld. } \\
& \text { Indigenous plant specles recorded from the SAAO site appear in Appendix 1. This list is due lorgely to } \\
& \text { the efforts of Mary Stobie, wife of one of the earlier Directors, but particularly those of Dr Penny } \\
& \begin{array}{l}
\text { Mustart, who produced the final compilation. The present studied contributed a further } 12 \text { records } \\
\text { for the SAAO site. }
\end{array} \\
& \text { Of the } 96 \text { indigenous species recorded, } 87 \text { are from dryland habitats, with nine endemic or near- } \\
& \text { endemic to wetlands. These are: Agrostis lachnantha var. lachnantha vinkagrostis, Bolboschoenus } \\
& \text { geeisterretije, Sarcocornia cf. capensis seekoraal (new record), Sparaxis bulbifera fluweelblom, the } \\
& \text { semi-parasite Thesium funale and Zontedeschio aethiopica arum lily. Key dryland renosterveld } \\
& \text { species and indicators are: shrubs and climbers - Searsio }
\end{aligned}
$$

141
BOTANHCAL SPECIALISTS ECOLOGIGAL ANALYSIS ENVIRONMENTAL MANAGEMENT

0

89＇z5	$605^{\circ} 0$	$\varepsilon<5$	68．85	EE＇S	ISOL	E\＆＇0	Ss．0	46	ELz	¢96	I＇s		पеวN
19\％II	Ose 0	84\％	264	625	$\square \mathrm{COT}$	120	25.0	$\varepsilon \varepsilon$	512	058	て＇s	E94 Orys	
14.6	カTE゙O	VIV	$87^{\prime} 27$	ZE＇E	LI＇9	DEO	680	62	961	0001	8＊	2940885	
2＇9\％	8980	L28	90＇sz	LE： 1	¢9\％\ddagger	$\varepsilon \square 0$	510	62	LOt	0001	て＇s	t9y oras	
Es＇6	LEZ＇0	95.	92.15	912	$88^{\circ} \mathrm{L}$	08＇0	080	$\nabla \varepsilon$	$4 \varepsilon 2$	EL6	2 S		uran
เ6＂6	92\％0	$90 . \varepsilon$	58．IT	ャでて	108	68.0	820	97	OLZ	Ozor	25	biy obvs	（Ig cany uopzenasuoj） ppenjisouar uado
69.6	$\varepsilon \notin Z 0$	¢0｀	20.15	50\％ 2	60%	180	sco	oz	822	002	25	EAY OVAS	
856	9220	ts ε	16.15	St＇z	$88^{\prime} 8$	t20	L2O	51	$z \downarrow 2$	OEII	t＇s	zNA OVWS	
68%	T2\％	10E	L2\％OL	$6 \tau^{\prime} \mathrm{z}$	＋6：9	＋20	0 0．0	52	802	0001	$0 \cdot 5$	Iny ovos	
$\begin{gathered} {[84 / 10 \text { ous }]} \\ 230 \end{gathered}$	$\begin{aligned} & (\%) N \\ & 180101 \end{aligned}$	$\begin{gathered} 1 \% 1 \\ >18001 \end{gathered}$	（3） ／10u3） anjen－1	8 N	${ }^{5}$	y	en	（3y／2u） dz кeng	［ $\mathrm{Ay} / \mathrm{gu}$ ） deyos	（sшцㅇ） әวue $-15!598$	$\mathrm{H}^{\text {d }}$	［aq리 P1븨	делй
				suones аряеэяиечэя									

	Sa					
Habitat	Field label	Bulk density （kg／l）	Texture			Classification
			Clay （\％）	Silt （\％）	Sand （\％）	
	SAAO RV1	1.11	13	20	67	Satm
Open renosterveld	SAAO RV2	1.12	13	15	71	Salm
（Conservation Area B1）	SAAO RV3	1.08	17	18	65	Salm
	SAAO RV4	1.05	15	20	65	Salm
Mean		2.09	15	19	67	
	SAAO RG1	0.72	9	8	83	LmSa
Renosterveld thicket	SAAO RG2	1.03	7	12	81	LmSa
	SAAORG3	0.98	9	8	83	LmSa
Mean		0.91	8	9	82	

omentosa korentebos（new record），Elytropappus rhinocerotis renosterbos（extremely rare on the site，although dominant in most renosterveld habitats，especially where there is marked disturbancel，Eriocephalus africanus kapokbos，Otholobium hirtum gryskeurtije，Olea europaea subsp．afticana wild olive，Asparagus capensis haakdoring；bulbs－Locheralia mediana， Ornithogaium thyrsoides chincherinchee，Babiana fragrans bobbejaantjie，Chasmanthe aethlopica suurkanolpyple（new record），Moraca aristata blou－ooguintjie（endemic to the SAAO grounds－ Mustart，2010），M．gawleri renosteruintjie，M．vegeta bruintulp，Sparaxis cf．grandiflora subsp．
fimbriato perskalkoentjie，Watsonia meriana var．meriana rooikanol（new record）and W．spectobills． fimbriato perskakoentje，Watsonia meriana var．meriana rooikanol（new record）and W．spectabils between Cape Town and Rondebosch（Goldblatt，1976 \＆1986，in Mustart，2010）．Most of this habitat has been lost to farming and residential development．The role of the SAAO for the conservation of this species is therefore crucial；annuals－Arctotheco calendula gousblom． Dimorphotheca pluvialis witbotterblom and Ursinia onthemoides margriet；grasses－Ehrharta
calycina rooigras and Hyparrhenla hirta thatch grass． Red List species occurring on the site are：the peas，Indigofera psoraioldes（Endangered）and Podalyria sericeo（Near Threatened），the bulbs tachenolia mediono var．mediana viooltjie
South Affican astronomical abservatory: vegetation and conservation
Moraea aristata blou-ooguintije (Critically Endangered, endemic to SAAO site), Sparaxis grandiffora cf. subsp. fimbriata fluweelblom,
As the renosterveld habltat at the SAAO is severely disturbed, there is a strong likelihood that species numbers would be far higher under natural conditions. Nevertheless several small shale
renosterveld sites in the Tygerberg'6 ${ }^{16}$ such as Durbanville Nature Reserve (102) Groot Phesantekral (101), Hoogekraal (112), Kliprug Farm (117) and Plattekloof Farm (96 species), have similar totals. But the latter can be as high as 234 (Joostenberg) and 211 species (Kanonberg Farm), presumably in less disturbed areas and with a more varied habitat.
In addition, there is a strong likelihood the renosterveld of the site is quite different from that of Signal Hill (the north-western limit of Peninsula Shale Renosterveld). A simple comparative analysis ${ }^{17}$ i. species occurrences in in in (i.e. half the SAAO total) are unique to the SAAO site, with the rest shared. Apart from the fact that
several species are wetiand endemics, most are dryland, suggesting that the SAAO site is floristically different from that of Signal Hill (quite llikely - the latter is hilly and much drier).
4.3 Vegetation
The original vegetation of the SAAO site was Peninsula Shale Renosterveld (Rebelo et al., 2006), provides a summary of the history of vegetation on the site where strong historical emphasis has been placed on the presence of wild brushwood (i,e. renosterveld) growing on hard clay soils. There are also records of locals having shown an interest in the rich bulbous flora present on the site. Figure 2 shows the distribution of vegetation across the SAAO site, mapped from the February 2015 CCT aerial photograph (8 cm resolution), with a summary of extent appearing in Table 3. Alien trees (3.97 ha) and developed areas (3.02 ha) comprise a total 6.99 ha of the 9.19 ha site, with 2.20 ha (23.9%) under diryland and wetland renosterveld. Most of the natural vegetation is located in the central west, northern and central eastern part of the site.
Of note, though, is that most of the renosterveld is in a poor condition, apart from locally, lacking a shrub layer which is so characteristic of this vegetation type (Low \& Rebelo, 1996);
${ }^{16}$ Data taken from Wood \& Low (1993); Low \& Roberts (1998-2016)
${ }^{17}$ The Sasflora database (Low \& Roberts, $1998-2016$) has a built-in function to compare selected site floras and
to establish fioristcic uniqueness when comparing sites, in this case two renosterveld habitats

[^13]Plate 1. Cross section of the shale geology of the central ridge. Where shallow, this gives rise to a Mis pah soil form, grading into probable Hutton soil forms where the soil becomes deeper. The
brown colour is primarily due to the presence of clay

Plate 2. Topsoil under open (grassy) renosterveld. Note brown colour (clay) and marked stoniness
$\stackrel{\rightharpoonup}{5}$
South African ostronomical observatory: vegetation and conservation

South African astronomical observatory: vegetotion and conservation

Plate 14. Olea europoea subsp. ofricano wild olive in the north of the SAAO site. This species forms a
key component of renosterveld thicket and may attain heights of over 7 m in the Tygerberg

Plate 15. Searsia tomentosa korentebos, a common renosterveld thicket species (new record)
155

South African ostronomical observatory: vegetation and conservation

Plate 18. Wetland in north of site, with dominance by the sedpe Bolboschoemus moritimus snyruigte there appears to be a major difference in substrate between this wetiand which is more sandy and insulare manitoka in distance

Plate 19. Phragmites australis fluitliesriet dominated wetland on the northern and eastern edges of the SAAO site. This species reflects a habitat which is constantly inundated and in which there is ver ittle seasonal variation in water table
157

South Africon astronomical observatory: vegetation and conservation

Plate 20 (top \& bottom). Fill and golf course on the River Club site, showing landscape devoid of
indigenous species and presence of exotic (introduced) trees

159 BOTANICAL SPECIALISTS ECOLOGIGAL ANALYSIS ENVIRONMIENTAL MANAGEMENT
4.4 Possible impacts of proposed River Club development on the renosterveld of the SAAO
site
Dr Liz Day's report on the wetlands of the River Club (Day, 2015) says the following: "The Flood
Report of Krige (2015) (in Day, 2015) suggests that year flood level would not affect flooding in adjacent properties. Subsequent discussions with $\mathbf{M r}$
 floodplain capacity, resulting in likely more rapid Inundation of areas below a specified floodine during an event of such a magnitude (as a result of reduced storage capacity). it is assumed that, up to floods of a magnitude at which flows bypass the constricting Salt River bridge, described in Krige (2015), infilling of the floodplain would also result in increased inundation depth in areas that have
not been infilled". not been infilled ${ }^{\text {L }}$.

There would be no impacts on the dryland renosterveld vegetation at the SAAO site ithe water levels would be constant). However, as articulated by Day (2015) there is possibility that certain wetiands would be more quickly inundated, along with an increase in inundation depth. This would likely Typho capensis bulrush are likely to Invade at the expense of those species wath a more ephemeral wetland character. By comparison, the artificial perennial inundation of the Kulls River wetlands has led to the decline and even loss of certain wetiand species in the area (Ninham Shand, 1999; Low,宫
becomes more perennial, this would compromlse this habitat in a major way and would aiso impact on efforts to rehabilitate and even augment this habitat.

4.5 Conservation

10.1.1. 4.5.1 The Observatory Landscape Fromework (OLF)

The OLF (Van der Walt \& Strong, 2010) has designated three conservation areas for the SAAO (Figure
Area A^{18} :
"Area A is mostly cultivated and includes the southwest area around the main entrance, the McClean Observatory and the oid tennis court where different locally indigenous bulbs (e.g. Sporaxis grandifloro \& Lachenolia mediana (Red data listed as vulnerable), a few annuals (e.g. Ursinla onthemoides) and herbaceous herbs (e.g. Pelargonium myrrhifolium) flower in spring under the existing pine and Mary Stobie (wife of a previous Director not occur here, but there are bulbs with speckled petals that Mary Stobie (wife of a previous Director at the SAAO) planted next to the small octagonal garden east
of McClean.
${ }^{28}$ taken verbatim from Van der Walt \& Strong (2010)
South African astranomical observatory: vegetation and conservation

162
COASTEC COASTAL AND ENVRONMENTAL CONSULTANTS
BOTANICAL SPECIALISTS ECOLOGIIAL ANALYSIS ENVRONMENTAL MANAGEMENT
South African astronomical observatory: vegetation and conservation

991

South African astronomicol observatory: vegetation and conservotion
5. CONCLUSIONS
The proposed development at the River Club is highly unlikely to impact negatively on the dryland is thus llikely assured, provided SAAO site. The security of the Critically Endangered Moraea aristata However, impacts on the SAAO's renosterveld wetlands might be signif if if inu are altered by the proposed River Club development and present seasonality is compromised. It is strongly recommended that all three conservation options are followed for the SAAO site and environs, but that efforts at extending the area of dryland renosterveld should be supported by a

APPENDIX 1. INDIGENOUS PLANT SPECIES
RECORDED FROM THE SOUTH AFRICAN
ASTRONOMICALOBSERVATORY
ϕ
\leftrightarrows_{0}

$E X=$ Extinct, $\mathrm{EW}=$ Extinct in the wild, $\mathrm{CR}=$ Critically Endangered, $\mathrm{EN}=$ Endangered, $\mathrm{VU}=$ Vulnerable, $\mathrm{R}=$ Rare, $N T=$ Near Threatened, $D O=$ Data Deficient, $L C=$ Least Concern, $N E=$ Not Evaluated
COASTEC COASTAL AND ENUIRONMENTAL CONSULTANTS 171
BOTANICAL SPECIALISTS ECOLOGICAL AND ENUSIRONMENTAL CONSULTANTS ENVIRONMENTAL MANAGEMENT IMPACT

CELASTRACEAE
Gymnosporia
buxifolia LC
EBENACEAE
Euclea
racemosa LC
FABACEAE
Indigofera
incana LC
psoraloides EN
Otholobium
hirtum LC
virgatum LC
Podalyria
seritea NT
GERANIACEAE
Pelargonium
elongatum LC
myrhhifollum var, myrrhifolium LC
triste LC
KIGGELARIACEAE
Kiggelaria
africana LC
LOEELACEAE
Cyphia
bulbosa LC
Labelia
erinus LC
MALVACEAE
Hermannia
hyssopifolia LC
multiflora LC
OLEACEAE
Olea
europaea subsp. africana LC
OXALDACEAE
Oxalis
caprina LC

APPENDIX \quad a
SPECIALIST FAUNAL REPORT (EXCLUDING BIRDS)
π

[^14]
흔

River Club Faural Basellne Assessment (October 2017)

Page 180

River Ctub Faunal Baseline Assessment (October 2017)
th
$\begin{array}{ll}\text { Abbreviations } \\ \text { ADU } & \text { Animal D } \\ \text { CBA } & \text { Critical B } \\ \text { EN } & \text { Endanger } \\ \text { EIA } & \text { Environm } \\ \text { FCG } & \text { Freshwat } \\ \text { FIA } & \text { Faunal im } \\ \text { FUCN } & \text { Internatic } \\ \text { LC } & \text { Least Con } \\ \text { NT } & \text { Near Thre } \\ \text { PRASA } & \text { Passenge } \\ \text { RBS } & \text { Raapenbe } \\ \text { SA } & \text { South Afri } \\ \text { SAAO } & \text { South Afri } \\ \text { SANBI } & \text { South Afri } \\ \text { SCC } & \text { Species of } \\ \text { SRK } & \text { SRK Cons } \\ \text { TOR } & \text { Terms of } \\ \text { TRUP } & \text { Two River } \\ \text { VU } & \text { Vulnerable } \\ \text { WC } & \text { Western } C\end{array}$
maintain a degree of ecological resilience for the remaining faunal groups here. For species like the better suite their needs and thus improve the overall conditions for maintaining a long. term population.

AMHIBIANS: A total of eight indigenous amphibian species may potentially occur on the River Club grounds and immediate surroundings, but the more realistic probable amphibian richness here is about six species (Table 6). The conservation status of these amphibians are almost all listed as being of LC, with the notable exception of the Western Leopard Toad (WIT) which is Endangered (EN). Even with the presence of a species of conservation concern (SCC), ie. the WLT, the FIA score for amphibians (Table 3; score $=6.25$) in the context of the River Club site is MODERATE at regional and LOW to MODERATE at national scales. Although this does not trigger a fatal flaw response in respect of the development intentions, the prevalence of WITs in this area does call for special considerations to adequately accommodate this species here. The WLT represents the most significant faunal concern in respect of the proposed River Club development intentions, and the long-term viability of this species must not be compromised by this development. Ta achieve this, specific mitigating measures will have to be implemented. The following aspects are relevant in this regard:

WESTERN LEOPARD TOADS (WIT)

- The only known WLT breeding sites in the region of the River Club are wetlands of the Raapenberg Bird Sanctuary (RBS) and about 1.5 km south-east in the Dude Mole area.

The WLT population of this specific area (Figures 2 and 3), ie. Observatory and surroundings, appears to be somewhat disjunct and seemingly completely separated from the WLT breeding populations further south (see Figure 4) on the Cape Peninsula.

Any proposed development of the River Club grounds and immediate surroundings must be mindful of the environmental constraints stemming from this WLT population. The following four components are critical for the viability of any WLT population:

Availability of suitable breeding habitat: In this case, the conservation and management of the RBS wetlands are thus of outmost importance. Additionally, the creation of supplementary WLT breeding habitat (e.g. along the western reaches of the site) is likely to improve the resilience of the localised Observatory WLT population.
2. Availability of habitat to provide shelter and food (forage): Enough natural or semi-natural habitat must be available within at least a 2 km radius of breeding habitats to sustain WLT individuals for the non-breeding period (i.e. about 10 months of the year). Such sectors must provide the adequate shelter and foraging requirements to sustain the WLTS until the next breeding season. Thus substantial green belts must remain undeveloped, e.g. along the two rivers and especially in the areas near to the RBS wetlands and the northern sector near the confluence, and also within the east/west dispersal corridors.

Arability of dispersal corridors: Multiple dispersal options between breeding habitat and yearround occupancy habitat must be maintained, ie. barriers must be limited. Connectivity must be
(and landscaped WLT breeding wetland habitat) and the eastern Liesbeek sector (including RBS and Black River). It will also serve as shelter/forage habitat for WLTs and certain other faunal species.
NORTHERN SECTOR: the northern Undeveloped section fowned by the Passenger Rail Agency of South Africa; PRASA) situated between the golf course and the railway line. This area does not form part of the proposed River Club development. th has good potential to serve as shelter/forage habitat and being an east/west faunal corridor. However, the terrain is currently suboptimal for these functions and would require a landscaping initiative to vegetate it adequately according to faunal (and WIT) requirements.
2. TOAD-FRIENDIY infrastructure: Toad-friendly structures (examples in Appendix 2) must be integrated with the proposed development, so that the negative impact on the WIT population can be minimise. The most important examples of such features are:
EXCCUSION BARRIERS: Low barrier walls or fencing can be used to prevent WLTs from gaining
UNDERPASSES: High-risk areas like roads can be made permeable for toads by means of a combinatlon of exclusion barrier walls to keep toads off roads, and underpasses to allow safe movement of toads between different ecological sectors.
WLT MANAGEMENT \& MONITORING; It is recommen
WLT MANAGEMENT \& MONITORING: It is recommended that a WLT management and should start at least one we drawn up for this proposed development. Ideally the monitoring and continue up untilifive breeding seasons after construction has been completed. The main aims of this monitoring would be to evaluate the success and efficiency of faunal dlspersal corridors, ecological shelter/foraging sectors, new WLT breeding habitat, and the toad-friendly infrastructure. Details to be formulated as part of the final design phase, if approved.

2 INTRODUCTION
The Liesbeek Leisure Properties Trust (LLPT) proposes to redevelop the River Club property situated within the Two Rivers Urban Park (TRUP) compiex near Observatory, Cape Town. The proposal assersial and residential components. The scoping and Environmental Impact Assessment (EIA) studies for this proposed development are being conducted by SRK Consulting
(South Africa) Pty Ltd (SRK), who in turn commissioned the undertake the freshwater ecosystem studies. To date the FCG has undertake the freshwater ecosystem studies. To date the FCG has compiled a preliminary scoping
baseline report (Day 2015), which also inciuded an avifaunal component. Additionally a assessment report was compiled by Nick Helme an avanificanal component. Additionally, a brief faunal report that was prepared for the TRUB study area (Helme 2016) in port of the botanical assessment botanical/faunal reports, the Western Leopard Toad (WLT) was highlighted as a species and conservation concern (SCC) in respect of the proposed developments here, and that a species of study was required to gain adequate insight in this regard. As such, a faunal consultant (M. Burger trading as Sungazer Founal Surveys) was subcontracted by the FCG (for SRK) to conduct a baseline assessment of the mammals and herpetofauna (1.e. reptiles and amphiblans) of the TRUP a baseline 2.1 Terms of Reference (ToR)

2.1 Terms of Reference (ToR)

Conduct a series of site vists/habitat assessments (day and night) and gather information and Identify faunal species at and ad Estimate the population size of faunal species that utilise the site;
3. Identify existing breeding locations for faunal species on the site; and

- Compilie a deskto baselline used as faunal movement corridors.
- Complie a desktop baseline faunal assessment (linformed by habitat assessment) based on known unal dilstribution patterns and habitat associations, including:

Identification of fauna that are known to or likely to use the site;
Indicacen of whether these include red data species or other SCC;
4. Identification of important off-site linkages;
3. Description of habitat requirements and likely areas of the site that they would utilise;
5. Broad comments on the sensitivity of the fail

Broad cormments on the sensitivity of the fauna to development - increased noise, buildings,
6. Comments on appropriate development setb
address the habitat requirements of conservation wort design of corridors and buffer areas to in addition to the above ToR, the speclalist will comment on the connel conservation worthy taxa/communities.
in addition to the above ToR, the speclalist will comment on the connectivity between the Observatory
W.T population and other populations in Cape Town e.g. the Cape Flats.

3 study area
The TRUP study area is situated in the Observatory region, near the confluence of the Black and Liesbeek rivers (Figure 2). Currently the main land-use nodes are: 1) The River Club venue, with a driving range and 9 -hole golf course to the north of the River Club facility, 2) undeveloped terrain owned by Passenger Rail Agency of South Africa (PRASA) in the far north of TRUP, 3) the South African (cal Observatory (SAAO) to the east of River Club, 4) the Raapenberg Bird Sanctuary (RBS) to the north and east of the SAAO, and 5) a small area to the south of River Club which is earmarked for an office park and residential development by SKA South Africa. The Black River flows along the eastern limits of the faunal study, whereas the western and northern limits are along the historical flow of the Liesbeek River. The current flow of the Llesbeek River is along a canalised structure that separates the River Club development area from the RBS and SAAO.

4 STUDY APPROACH AND METHODS

The faunal assessment was conducted in the following way:
Several brief site visits were conducted during night and day during the period October 2016
through to January 2017. The main aim was to assess habitat diversity/quality /with specific attention to WLT habtats), and to search for some representatives of the three faunal specific - Some small mammal trapping was conducted in the PRASA and RBS sectors, and tadpole scoops were conducted on the periphery of the RBS wetlands.

- Other sources (e.g. online data sets, literature and persons) were consulted to gain deeper insights of the property. The main sources were:
ispot Nature: hates://wsw. Sspotnature.ort
Animal Demography Unit (ADU) Vitual I Muse
Or Tony Rebelo: South African Biodiversity institute (SANBI).
- Or Iohn Measey: Centre for Invasion Biology, Stellenbosch University.
- Mrs Jean Ramsay: Volunteer, recording annual WLT activities on the SAAO property.
- Miss Peta Brom: Student of Urban Ecology.
- Faunal importance assessments (FIA) were conducte
- Faunal importance assessments (FIA) were conducted for the three faunal groups.

4.1 Study limitations

The relatively short field surveving period allows mainly to gauge habitat parameters of the study area, with insight on faunal assemblages having to be derived from other sources and inferences made from habltat availabillty. The extrapolations made from assessing the habitats and the hablat requirements of the species known from the general region, are sufficient for the compliation of reasonably accurate ($\mathbf{8 8 0 \%}$ accurate/complete) faunal checklists. The WLTT survey was conducted about one to two months Ifter the 2016 WLT breeding survev, but sufficient information was obtained via other sources to gain an adequate understanding of WLT demographics in this region.

4.2 Faunal importance assessments (FIA)

The purpose of assessing the faunal importance of each of the three vertebrate faunal groups, i.e. mammals, reptiles and amptibians, is to obtain an approximate impresslon of each group's value at a repional. (Coct Metropolitan Areal and national (South Arrican; SA) scale. This assessment incorporates a variety of components, i.e. the presence/absence of threatened species, the levels of conservation status of the threatened species, overall species richness, levels of endemism, ecological homogeneity, and the site's value as an ecological corridor, a green zone, or sourch eterogeneity or homogeneity, and the site's value as an ecological corridor, a green zone, or source or sink for genetic exchange in respect of peripheral natural areas. The IUCN Red list of threatened species (IUCN 2017),
together with the respective $S A$ assessments of the three for together with the respective SA assessments of the three faunal groups, i.e. mammals (Child et al.
2015), reptiles (Bates et $a l$. 2014) and amphiblans (Minter et oi. 2004; Meesey 2011), served as the
sources for the conservation status for fauna of the used to determine the relative importance of the River Club site in respect of these foung criteria were
the context of the CoCT Metropolitan Area (regional) and SA (national), A score of one point is given for each YES answer, excepting for Red List species where as many as two points can be awarded. A score of 0.5 is awarded if the answer is disputably YES or NO for questions 1 to 5 . A score of $0.25,0.5$, 0.75 or 1 may be awarded for questions 5 to 12 , depending on the subjective assessments of these
questions. Thus a maximum possible score is 12 points.

- Score total $4.25-8=$ MODERATE at regional and LOW to MODERATE at national scale.
- Score total $8.25-12=$ HIGH at regional and MODERATE to HIGH at national scale.

1. Are any threatened (Red List) specles known to occur within the River Club site? Note that for the purpose of this evaluation, threatened species constitute those listed as Critically Endangered (2 points), Endongered (1.5 points), Vulnerable (1 point) and Near Threatened (0.5). If several threatened species are present, only the most threatened status of them all is applicable, thus a maximum of 2 points can be scored in this section. Note also that if a score is of YES (1) is made here, then no score can be presented in the next category fi.e. potential occurrence of threatened species). Thus the maximum total possible score for a particular faunal evaluation is 12.
2. If not, are any threatened species likely to occur within the River Club site?
3. Are any localised (COCT) endemics known or likely to occur within the River Club site? Are any provincial (WC) endemics known or likely to occur within the River Club site?
Are any national (SA) endemics known or likely to occur within the River Club site?
to whin the River Club
Is the site likely to support high species richness relative to the Coct Metropoliton Area?
4. Are the existing faunal communities thought to be of importance in respect of the local ecological
functioning of systems within the River Club site?
5. Is the total extent of the River Club site large enough to support the existing faunal communities in the long-term?
6. Is the habitat quality of the River club site such that it is suitable for the long-term support of faunal communities?
Does the River Club sit
7. Does the River Club site have great habitat heterogeneity that would favour overall high species
richness?
8. Is the River Club site important in respect of peripheral natural areas, either as an ecologital
9. is the River Club site important in respect of peripheral natural areas, etther as an ecological
corridor or a significant suburban green zone?
10. Is the River Club site important in respect of peripheral natural areas as a source or sink for genetic exchange?
al

Seomoraholosical features: The River Club site is comprised of mostly flat terrain with a few low landscaped mounds incorporated within the golf range section. The area is devoid of any significant

RESULTS

 respect of the likely faunal species composition of that site. The assessment of these environmental parameters enables the faunal surveyor to make reasonable predictions concerning the likely or absence of specific species at a particular site. These unconfirmed species are incorporated in the respective checklists for the various faunal groups (Tables 4 to 6), together with nown/confirmed species records that were obtained from other sources or by means of new faunal surveys and field observations. The relevant habitat parameters of the site are as follow (figures 3 to 14):The general terrain is substantially transformed and developed, most notably the SAAO grounds and the River Club property with assaciated buildings, parking lots and golf course/range fields. The belt of PRASA terrain beyond (north of the golf course/range is also substantially degraded. The TRUP terrain is generally flat, without any rocky protrusions. A few small artificial ponds are present within the landscaped golf course section. Although also somewhat transformed, the Raapenberg Bird Sanctuary (RBS) wetlands are still of moderate ecological importance and of local conservation value.

 short-cuts to the confluence with the Black River. The natural flow regime of the truncated section of the original Liesbeek along the west and north-west of the study has dwindled to a generally stagnant wettand system.
Veretation types and ruality: Vegetation descriptions of the TRUP study area were prepared in the botanical report (Helme 2016). In summary, the site falls mostly within the original extent of the Cape Flats Dune Strandveld Vegetation type, and a small portion falls within the original extent of the Peninsula Shale Renosterveld vegetation type. The Cape Flats Dune Strandveld Vegetation Type is classified as Endangered, with the Peninsula Shale Renosterveld vegetation being endernic to the Cocr

 habitats. According to the botanical assessment (Helme 2016), the only remaining terrestrial areas with traces of indigenous vegetation are on the SAAO grounds. However, these small remnants <<1 ha) are heavily transformed and currently support less than 10% of their likely original plant communities.

, Paga

Figure 3: The historic unlined reaches of the Liesbeek
River, along westem and north-western boundary of

Figure 5: The current confluence of the Liesbeek and Black rivers at the north-eastern reaches of the River
Club property.

 correlated with vegetation type. Additionally, substrate type is also a factor for fossorial (burrowing) species, e.g. golden moles, mole-rats, legless skinks, rain frogs, etc. But much of the terrain seems fairly compacted, thus offering only limited scope for varied fossorial faunal assemblages. A summary of substrate types were presented in the botanical report (Helme 2016):

- Alkaline marine sands derived from the Witzand formation (in north-western section).
- Acid sands from the Springfontein formatian (east of modern day Alexandra Road, and also along parts of the Black River).

Clay soils derived from the underlying Malmesbury group shales and ferricretes in south-western section and a strip between the Black River and modern day Alexandra Road).

Wetland features: The most prominent River Club wetland features were assessed in the freshwater ecology baseline report (Day 2015). Briefly, these are as follow:

- OLD (WEST) LESBEEK RIVER: The historic unlined reathes of the Liesbeek River, along western and north-western boundary of the TRUP study area (Figure 3). Due to the construction of a canalised shortcut to the confluence of the Black River (Figures 4 and 5), which currently constitutes the main flow of the Liesbeek River along the eastem boundaries of the River Club, the historic Liesbeek has lost most of its flow ability and has become a stagnant system for part of the year. it is not known if WLTs utilise this stretch of wettand (see Figure 17) for breeding, but it appears to be at least partially suited as WIT breeding habitat. For the purpose of this study, it is therefore presumed that WLTs do in fact breed here.

NEW (EAST) LESBEEK RIVER: The canalised portion of the Liesbeek River (Figure 4) that flows along the eastern boundary of the River Club property is not suitable as WLT breeding habitat, mostly
because it is a flowing river system. WLTs generally prefer standing bodies of open water. BLACK RIVER: The Black River that forms the eastern boundary of the TRUP study area (Figure 16)

RAAPENBERG BIRD SANCTUARY (RBS) WETLANDS: Several bodies of standing water are present within the RBS (Figures 13 and 17). The RBS is currently the only confirmed WLT breeding site within the River Club study area, although it is not yet clear exactly which of the RBS wetlands are utilised. Another confirmed WIT breeding site is situated close by in the Oude Molen region.
GOLF COURSE PONDS: Three small artificial wetlands (Figures 6 to 8 , and 17) are present in the GOLF COURSE PONDS: Three small artificial wetlands (Figures 6 to 8, and 17) are present in the
northern reaches of the golf course. Two of these (Figures 6 and 7) seem ideal as WLT breeding habitat, whereas the third (figure 8) dries up too soon to allow for successful tadpole metamorphoses.

SOUTH AFRICAN ASTRONOMICAL OBSERVATORY (SAAO) WETLAND: A small seasonal wetland is present in the narth-western corner of the SAAO grounds (Figures 14 end 17). It has moderate to low potential to serve as WLT breeding habitat.
5.2 Mammal FIA
The potential mammal species richness total of the River Club site is 29 (see checklist: Appendix 1 , Table 4), but more realistically only about 19 (or less) mammal species are likely to inhabit or occasionally utilise the site. None of these are threatened species, but note that the global (IUCN) and regional (Child etal. 2016) status of the African Clawless Otter is NT. As is typical for present-diay urban green zones, several mammal species that occurred here historically (e.g. ungulates and medium/large carnivores) have become locally extinct. The current remnant mammal fauna is comprised mostly of small species like rodents, insectivores and small camivores. Although the rodent and insectivore species may be resident to the River Club site with breeding assemblages, the small carnivores are likely to be occasional visitors only.
The FIA for mammals (Table 1 ; score $=4.5$) in the context of the River Club site is LOW at regional and national scales. The small size of the River Club site, combined with its low habitat heterogeneity and relatively degraded/transformed state, renders this site relatively unimportant in terms of mammal assemblages of the COCT Metropolitan Area. From a mammal perspective, there are thus no reasonable or compelling grounds for the outright objection to the current development proposal for this site.
Table 1: Mammal FIA of the River Club site at regional and national scales.

Criterion	nA score
Known presence of threatened species	0.5
Probable presence of threatened species	0
Presence of CoCT endemics	0
Presence of WC endemics	1
Presence of SA endemics	1
High species richness relative to the CoCT	0.25
Important ecological functioning	0.25
Size of the site	0.25
Habitat quality of the site	0.25
Extent of habitat heterogeneity	0.25
Importance as an ecological corridor or an urban green zone	0.5
Importance for genetic exchange	0.25
TOTAL	4.5

Figure 13: A wetland within the RBS that is utilised Figure 14: A small seasonal wetlond on the SAAO property. No WLT brecding ectivities have been noted
from this particular wethad.
 Figure 13: A wetland within the RBS that is utilised
as WLT breeding habitat.
5.3 Reptile FIA
The potential reptile species richness total of the River Club site is 31 (see checklist: Appendix 1, Table 5), but more realistically only about 20 (or less) reptile species are likely to inhabit or occasionally utilise the site. One threatened reptile species occurs within TRUP boundaries, ie. the Vulnerable (VU) Cape Dwarf Chameleon (Bradypodion pumilum). Note that the conservation status of this chameleon was recently downilisted to N T, but this revised status will only become official in 2018 . For the purpose of this FIA, the current listing of VU still applies.
The FIA for reptiles (Table $2 ;$ score $=5$) in the context of the River Club site is MODERATE at regional and LOW to MODERATE at national scales. The small size of the River Club site, combined with its low habitat heterogeneity and relatively degraded/transformed state, renders this site relatively unimportant in terms of reptile assemblages of the cock Metropolitan Area. From a reptile perspective, there are thus no reasonable or compelling grounds for the outright objection to the current development proposal for this site.

5.4 Amphibian FIA
The potential amphibian species richness total of the River club site is eight frog species (see checklist: Appendix 1 , Table 6), with probably only six species actually occurring here. The Endangered WLT is one of the species that utilises the River Club site. The Observatory region is an important strongholds for WLT, with the R8S serving as the nucleus for WLT breeding habitat.

Although the occurrence of this threatened frog and its associated habitats have upped the FIA score to substantially higher than that of the other two faunal groups fie. 6.25 vs 4 , and 5 respectively), it is nevertheless still below the threshold for being of HIGH importance at a regional scale and MODERATE to HIGH importance at a national scale. This is mostly due to the small size and relatively degraded/transformed state of the River Club site, low habitat heterogeneity, and low species richness relative to the COCT Metropolitan Area.

The FIA for amphibians (Table 3; score $=6.25$) in the context of the River Club site is MODERATE at
 flaw response in respect of the development intentions. However, due to the prevalence of WITs in this area, special considerations and mitigation measures are nevertheless called for. These are outlined and discussed below in a section dealing specifically with the WLT in the context of the proposed development of the River Club site.

5.5 The Observatory Western Leopard Toad population The demographics of WLTs in the Observatory region is currently not fully understood. The population appears to be centred in the RBS environs, with most observations having been recorded from the SAAO grounds (Figures 15 and 16). WLT specimens were obsenved on the River Club grounds during the 2016 site visits, gencrally in the north-eastern reaches of the golf course, and in association with the original Liesbeek River on the west. Some scattered WLT records are known as far as 1.5 km away from the River Club region, to the south-west and south east in Observatory, Mowbray and south-western reaches of Pinelands (aka Oude Molen). Although the M5 must surely serve as a formidable dispersal barrier for WLTs moving between the RBS and south-western Pinelands (Oude Molen), it would appear as though some degree of connectivity still remains. This is presumably at the point where the M5 crosses the Swart River (Figure 17). Alternatively (or additionally), it may be that some of the wetiands just of the Black River are utlised as WLTT breeding habitat (Figure 17). This needs to be investigated at some stage. The precise locations of RBS wetlands that serve as WLT breeding habitat are currently in dispute (due to salinity parameters), and should be investigated during forthcoming WLT breeding events. Currently, the only other known (confirmed) WLT breeding site in addition to the RBS is in this area is in the Oude Molen region.

Figure 15: The two WIT records in the Oude Molen region are likely associated with a small wetland (black circle) in this area. The wetlands indicated by the stippled blue polygon may potentially serve
as wLT breeding habitat (to be confirmed). Although the M5 is a significant dispersal barrier that as WLT breeding habitat (to be confirmed). Although the MS is a significant dispersal barrier that
hampers WIT movements between the River Club region and this western region, the bridge across the Black River (stippled red polygon) may potentially provide some degree of connectivity.

Figure 17: Observation records of WIT in the general region of the River club (small orange circles), yellow-lined polygons indicate wetlands that additionally may possibly be used as WIT breeding
sites. yellow-lined polygons indicate wetlands that additionally may possibly be used as WIT breeding
sites.
within 25 km of the sea, but adults have been recorded in the mountains up to 500 m asi. The WLT distribution is disjunct, with two distinct subpopulations separated by about 100 km . These are the COCT Metropolitan Area and Overberg subpopulations. The eastem Overberg subpopulation is genetically distinct from those in the western CoCT region (Measey and Tolley 2011). For the purpose addressing the question of Observatory WLT population connectivity, the focus will be on the western COCT WLT subpopulation (Figures 18 to 20). This subpopulation is distributed across four quaternar catchments, roughly according to the following regions:
Southern catchment, including Noordhoek, Fish Hoek and Kommetjie repions. The Noordhoek and Fish Hoek regions is one of the most important stronghoids for W/Ts. The Kommetile population was recently re-established, and is separated by about 5 km from the Noordhoek/Fish Hoek stronghold. This is the southern-most population on the Cape Peninsula.
Western catchment, Including Hout Bay region. This is also somewhat of an isolated population, separated by about 7.5 km from other CoCT WLT populations.
Eastern catchment, including Lakeside, Kirstenhof, Bergvliet, Constantia, and onto the Cape Flats Northern eatchment, including Observatory region. This is the nortant stronghold for COCT WLTs. species, and it is seemingly well separated ($9-20 \mathrm{k}$. This is the northern-most population for the species, and it is seemingly well separated ($9-10 \mathrm{~km}$) from other CoCT. WLT populations.
Although the two western and eastern subpopulations were shown to be genetically distinct (Measey and Tolley 2011), this study could not determine any simple patterns of isolation by distance within the populations of the COCT WLT subpopulation. And although it is generally expected that the influences of different catchments would fikely result in significant gene-flow partitioning, again this was not a finding of this study. Instead, distinct genetic group assemblages of haplotypes were found in assaciation with breeding areas, and the influence of mountain barriers also shows grouped genetic structuring. These findings are inconclusive in terms of assessing the degree of connectivity of the Observatory WLT population. For the purpose of this faunal assessment, most of the evidence points it being a distjunct (unconnected) population, and must thus be treated as being of special conservation signiflicance. It is recommended that a genetic study be conducted to address this particular ambiguity.

[^15]River Club Faunal Baseline Assessment (actober 2017)
5.7 WLT ecological requirements

The following four components are critical for the viability of any WLT population:

Breeding habitat: Availability of suitable breeding wetland habitat is a critical component in the life history of WITs, and are utilised during the period from approximately late July to middle or late November and sometimes up until early Decearber. Eggs are generally laid during Augus//September, with the remaining weeks being for the development of tadpoles into metamorphling toadies. Several WLT breeding habitats within the CoLT Metropolitan Area have been destroyed or degraded in the course of suburban development over the past decades. Conversely, several artificial wetlands constructed here during the past decades have become seemingly suitable as substitute WLT breeding habitats. It is encouraging that the creation of artificial wetland habitats seems to be a viable practical option to increase the breeding potential of WLT populations. In the case of the proposed River Club development project, the RBS wetlands appears to be the primary WLT breeding site. However, the open pans in this area are saline, at least at times (Liz Day pert. comm.) and thus seemingly not suited for WIT breeding. The precise areas at the RBS that are used for WLT breeding need to be determined/investigated during forthcoming WLT breeding seasons. Some of the other existing wetland features (figure 17) in this area are potential WLT breeding habitat. The proposal to transform the old (western) Llesbeek River into a terrestrial landscape with WLT breeding ponds is a positive development initiative, which may ultimately contribute to the resilience of the Observatory WLT population. However, the presence of breeding habitat alone is not sufficient to safeguard a WIT population.
Shelter and forapims habitat: The availability of habitat to provide for WIT shelter and food requirements is another critical component for the viability of any WLT population. Most of the year adult and juvenile WITs are not specifically associated with the breeding ponds. After breeding and/or metamorphosis have taken place, the toads disperse away from the wetlands and occupy suitable terrain in the general region. Most toads are likely to remain within about a 0.5 to 1 km radius of the breeding ponds, but it is well known that many will move over 2 km away. Much of the TRUP terrain In its current state consists of short-trimmed grass (lawn), most prominently on the driving range, golf course and SAAO grounds. This is generally suboptimal as WLT shelter/forage habitat, although toads will still visit such terrain. Likewise, the PRASA property in the northern reaches of the TRUP study area is also degraded and not well suited as WLT shelter/forage habitat. The proposal to create substantial sections of habitat to specifically improve shelter and foraging conditions for WITs within the study area is also a positive development initiative that can increase the resilience of the Observatory WIT population. This would entail a substantial increase of low and medium height vegetation cover, with mixed plant species so that invertebrate i= WLT prey) diversity and abundance would be promoted. The more of this type of habitat available in the area, the greater the prospects for maintaining viable breeding stock in perpetuity, Physical shelters for WITs can be integrated within

River Club Faunal Baseline Assessment (October 2017)

Page 203

Figure 18: Known WLT breeding localities within the jurisdiction of COCT (not complete). Note the
relative isolation of the northern-most breeding population in the Observatory region.

Figure 19: Quaternary catchments (4 polygons) with Figure 20: An updated schematic representation of $\begin{array}{ll}\text { WLT sampling sites (white dots) within the CoCT } & \text { the quaternary catchments (4 polygons), based on the } \\ \text { Metropolitan Area (from Measey and Foley 2011). } & \text { study conducted by Measey and Foley (2011). Black }\end{array}$
the landscaped/gardened area. This can be in the form of natural logs, or artificial structures such as pieces of broken pots or ceramic piping cut lengthwise. The improved moisture retention abillties of
 is that by increase the proportion of WLT metamorphlings that mature to adulthood, the overall resilience of the local WLT population would be increased.

Dispersal corridors: With the expansion of urban/suburban communities, it sometimes happens that some faunal communities will become fragmented and isolated. A specific population may end up being split into several smaller subpopulations that can no longer come into contact with each other. This typically happens in species with limiting mobility, and may cause the genetic nonviabllity of subpopulations. This is certainly of relevance to current day WLT populations too (see for example Measey and Tolley 2011), and thus dispersal corridors are of great importance in maintaining the overall resilience of WIT subpopulations. Any development should also consider the larger scale ecological considerations, instead of only the on-site issues. In the case of the Observatory WLT subpopulation, it appears to be disjunct from other CoCT WLT subpopulations. This in itself is of conservation interest and value, and requires additional studying at the regional scale. In the context of the proposed River Club development, the on-site dispersal corridor needs are primarily to maintain connectivity for east/west migrations (i.e. between RBS and the western Liesbeek region). Details of the shelter/forage sectors and ecological dispersal corridors for this project are presented further below.

Hazardous features and high-risk areas: Over and above the need for habitats to cater for breeding, shelter and diet requirements, and dispersal corridors, it is also important to limit the hazardous components that may hinder WLT mobility or cause WLT mortalities. In a suburban selting, the orevalence of brick or concrete walls present WITs with a maze of barriers which they can often not pass. Toads thus have to expend greater effort during their dispersal endeavours, and also the options for encountering suitable habitats are reduced. High-risk features include pitfall structures from which toads cannot escape (e.g. steep-sided canals, stormwater drains and swimming pools), and roads with vehicular traffic. These threats and high-risk features are discussed in greater detail below.

5.8 WLT threats

The hazardous features and high-risk areas that were referred to above, can cause significant WLT mortalities. These hazardous features can usually be grouped into one of the following four categories:

Roads/vehicles: WhTs are explosive breeders. which basically mean that they breed for a relatively short period of time each year. During this breeding event, adult toads move from their year-long shelter/food habitats to the breeding ponds. In an urban setting this means that these toads have to cross several roads to get to and fro these habitats. Mortality of the breeding stock caused by vehicular raffic is one of the most significant impacts on WLT populations, and one of the primary reasons why this species is currently listed as being EN. As such, the network of roads associated with the proposed

River Club development will have to incorporate various safeguarding measures to limit or prevent toad mortalities on these roads. Basically, the aim would be to prevent toads from being able to get onto roads, yet at the same time the roads must not restrict the movement of toads between the various ecological sectors. The placement of underpasses in combination with exclusion barrier walls (see Appendix 2) can be employed as an effective mitigation measure to achieve this aim.

Harsh terrain: The most hazardous areas in terms of WLTs are busy roads and pitfall features as outlined above. Additionally, large open (unsheltered) areas such as sports fields and parking areas can also cause substantial mortalities. This is usually caused by dehydration and fatigue, for example when thousands of newly metamorphosed toadiets would inadvertently arrive on such terrain. Greater visual exposure to predators such as crows may also be a contributing factor of toad mortalities under these circumstances. As proposed above for roads and pitfall zones, such inhospitable open terrain can be made off-limits by the strategic placement of exclusion barriers.

Pitfalls: In the course of adult and juvenile toads moving about in a suburban environment, they may encounter steep-sided features into which they can fall and not escape. The most common of these pitfall traps are swimming pools, steep-sided canals and stormwater drains. Falling into such structures may cause mortalities by means of starvation or dehydration or drowning. Developments should in general always be mindful of such hazards, and not only in cases where threatened frogs occur. Such hazards can be minimised by erecting exciusion barriers to prevent access to such features
 cases. Even very small pitfalls can cause toad mortalities. For example, during the 2016 site visit it was discovered that the small plastic irrigation boxes that are currently present on the River Club golf course are entrapping and killing toadlets. The proposed River Club development must be mindful about the negative impacts of pitfall structures, and must provide escape options wherever these are installed (e.g. stormwater drains).

Obstructions: Solid brick or concrete walls limit the dispersal options of wandering toads. In some instances this may cause large-scale mortalities by dehydration when for example droves of newiy metamorphosed toadlings would encounter such a dead-end structure. Where practical, developments should preferably use permeable fencing that does not restrict the movement of small terrestrial animals. Solid walls can also be modified to make it permeable, by providing of a series of plpes/holes through the wall at ground-level. It is of course important to distinguish between barrier walls where permeability is desired (i.e. so as not to hinder toad movements) and barrier walls that are explicitly placed to restrict entry to harsh terrain. The perimeter fencing of the proposed River club must therefore be permeable at ground level so that WLTs and other small fauna species can move to and fro beyond the TRUP boundaries.
5.9 The River Club development in the context of WLTs

Several general mittigation measures have been formulated during the course of the freshwater, botanical and faunal assessments (2015-217), and are based on Alternative 1 (this being the preferred alternative for both the biodiversity team and the development team). The mitigation measures most relevant to the faunal considerations are summarised below:
2. ECOLOGICAL SECTORS: Several natural or semi-natural ecological sectors must be provided to serve as shelter/forage habitat for WLTs and other faunal species. These sectors will be landscaped and gardened specifically with the aim of optimizing the conditions for WLT
habitation. Some of these ecological sectors may further function as WLT breeding habitat and/or habitation. Some of these ecological sectors may further function as WLT breeding habitat and/or
faunal dispersal corridors. The most important ecological sectors are: faunal dispersal corridors. The most important ecological sectors are:
LIESBEEK WEST SECTOR: The historical flow area of the Liesbeek Rive

LIESBEEK WEST SECTOR: The historical flow area of the Liesbeek River to the west of the River
Club. This sector is earmarked to be converted and landscaped into being more of a vegetated Club. This sector is earmarked to be converted and landscaped into being more of a vegetated
terrestrial landscape, with seasonally flooded wetlands to serve as WLT breeding habitat. LIESBEEK EAST SECTOR: The canalised section of the Llesbeek River to the east of River Club. eological sector is earmarked to be converted and landscaped into a more natural (not canalised) watercourse with a substantial buffer area (the total river corridor to include an area of width at least 25 m) of lawn and semi-natural vegetation.

- EAST/WEST CORRIDOR: The east/west ecological (or faunal) corridor between the historic and canalised Liesbeek watercourses, as per the current development layout vision. This wide (65-100 m) vegetated green belt will serve as the main linkage between the western liesbeek sector (and andscaped WLT breeding wetland habitat) and the eastern Liesbeck sector (including RBS and lack River). It will also serve as shelter/forage habitat for WLTs and certain other faunal species. NORTHERN SECTOR: the northern undeveloped section (owned by the Passenger Rail Agency of South Africa; PRASA) situated between the golf course and the rallway line. This area does not form part of the proposed River Club development. It has good potential to serve as shelter/forage habitat and being an east/west faunal corridor. However, the terrain is currently suboptimal for these functions and would require a landscaping initlative to vegetate it adequately according to faunal (and WLT) requirements.

4. TOAD-FRIENDLY INFRASTRUCTURE: Toad-friendly structures (examples in Appendix 2) must be integrated with the proposed develcpment, so that the negative impact on the WLT population can be minimise. The most important examples of such features are:

EXCLUSION BARRIERS: Low barrier walls or fencing can be used to prevent WLTs from gaining access to hazardous terrain or high-risk areas such as parking lots and roads.

UNDERPASSES: High-risk areas like roads can be made permeable for toads by means of a combination of exclusion barrier walls to keep toads off roads, and underpasses (e.g. culverts) to allow safe movement of toads between different ecological sectors.
5. WLT MANAGEMENT \& MONITORiNG: it is recommended that a WLT management and monitoring programme be drawn up for this proposed development. Ideally the monitoring should start at least one WLT breeding season prior to commencing with the construction phase, and continue up until five breeding seasons after construction has been completed. The main aims

WLT breeding habitat, and the toad-friendly infrastructure. Details to be formulated as part of the
detailed design phase, if approved.

references

The following references were consulted in the preparation of this faunal baseline assessment report:

Anon 2013. Citizen science \& the Western Leopard Toad. Quest $9(4): 18-21$.
Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J. and De Villers, M.S. (eds). 2014. Atlas ond Red LLst of the Reptles of South Africa, Lesotho and SWariland. Suricata 1 . South African National Biodiversity hstitute, Pretoria.
heritoge. Water Research Commission Report No TT $376 / 08$.
Brown, C. and Magoba, R. (eds.) 2009. Rivers and Weitands of Cope Town. Caring for our rich aquatic 37/0.
Ing, A, Sthel, A., Burger, M. and Kelgast, J. 2013. A molecular phylogeny of Africain Dainty Frogs, with the description of four new species (Anura: Pyxicephalidae: Cocosterum). Zootoxa
37015): $518-550$.

Child, M.F., Roxburgh, L., Do Linh San, E., Raimando, D. and Davies-Mostert, H.T. 2016. The Red List of Mammals of South Africa, Swoziland ond Lesotho. South African National Biodiversity Institute and Endangered Wildifie Trust, South Africa.

City of Cipe Town 2016. CoCT Biodiversity Network 2016. Avalable from the Biodiversity Gis website. Day, L. 2015. Proposed redevelopment of the River Club, Observatory: Prellminary input into the Scoping Phase Baseline Study: Freshwater Ecosystems. FCG report - July 2015.

DEA 2011. Threatened Terrestrial Ecosystems in South Africa. Government Gazette Vol. 1002: No. 34809. National Printer, Pretoria.

Dodd C.K. and Cade B.S. 1998. Movement patterns and the conservation of amphiblans breeding in small, temporary wetlands. Conservation Biology 12(2): 331-339.

Ficetola G.F. and De Bernardi, F. 2004. Amphiblans in a human-dominated landscape: the community structure is related to habitat features and isolation. Blological Conservation 119: 219-230.

Funk, W.C., Greene, A.E., Corn, P.S. and Allendorf, F.W. 2005 . High dispersal in a frog species suggests hat it is vulnerable to habitat fragmentation. Biol Lett. 1: 13-16.

Glbbs J.P. 1993. Importance of small wetlands for the persistence of local populations of wetlandassociated animals. Wetlands 13(1): 25-31.

Heime, N. 2016. Specialist botanical and ecological scoping phase input: Proposed Two Rivers Urban Park development framework, Cape Town. NHBS report -July 2016.

8 APPENDIX 1: SPECIES CHECKLISTS

Table 4: A checklist of mammals that are known from or likely to occur at the River Club grounds and immediate surroundings. Conservation status according to 1 UCN and local (SA; child et al. 2016) listings include the following: Least Concern (LC) and Near Threatened (NT). Endemism is as follow; Endemic to South Africa, Lesotho and Swaziland (SA), endemic to Western Cape (WC). Scoring for likelihood of occurrence: Possible occurrence (1), probable occurrence (2) and

Table 6: A checklist of amphibians that are known from or likely to occur at the River Club grounds and immediate surroundings. Conservation status according to IUCN and local (SA) listings Include the following: Least Concern (LC), and Endangered (EN). Endemism is as follow: Endemic to South Africa, Lesotho and Swaziland (SA), endemic to Western Cape (WC). Scoring for likelhood of occurrence: Possible occurrence (1), probable occurrence (2) and confirmed occurrence (3). Confirmed records were provided by Burger (2017) and Ramsay (2017).

Sclentific name	English name	IUCN/SA	Endemism	Occur	Notes
Bufonidae	Toads				
Sclerophrys capensis	Raucous Toad	LC/LC	SA	1	Feral population known from Observatory
Scterophrys pantherita	Western Leopard Toad	EN/EN	WC	3	Burger (2017); Ramsay (2017)
Vandilkophrynus ongusticeps	Sand Toad	LC/LC	SA	3	Ramsay (2017)
Pyricephalidae	Pyxicephalid frogs				
Amietia fuscigulo	Cape River Frog	LC/LC	\$A	2	
Cacosternum platys	Flat Caco	LC/LC	WC	1	
Strongylopus groyii	Clicking Stream Frog	LC/LC	0	3	Burger (2017); Ramsay (2017)
Tomopterna delalondii	Cape Sand Frog	LC/LC	SA	2	
Pipidae	Pipid frogs				
Kenopus laevis	Common Platanna	LC/LC	0	3	Burger (2017); Ramsay (2017)

 5. Fence structure curved to the right, to deter access to the left area.
 2. Straight wall with angled lip on right side, to deter access to the left area.
3. Wall angled to right, to deter access to the left area. 1. Straight wall with horizontal lip on right side, to deter access to the left area.

 fences) to maximise their functionality (see below).

Figure 22: An example of an underpass with a grid roof, designed for toads and other small faunal
species. The entrance/exit points are fringed with steep-sided walls to direct faunal movements.

$\begin{array}{l}\text { Figure 25: Underpass with a grid roof, designed for } \\ \text { toads nnd other small faumal species. }\end{array}$	$\begin{array}{l}\text { Figure 26: Underpass with a grid roof, designed for } \\ \text { tonds and other small faunal species. }\end{array}$

A
h
$\eta=$ srlk consulting

Figure 2 shows the positions of test pits where water levels were measured. The water levels
range between 0.8 and 1.6 mamsl and are lower than the water levels in the Rivers, again
suggesting groundwaler flow towards the rivers. suggesting groundwaler flow towards the rivers.
Interesting to note is that the River Club has a fill layer of 1.5 to 2 m thickness, underlain by nainly at the contact between the fill and sediments. Before the diversion channet was build, the water table are at the contact with the fill material.

The following data were used: - Borehole and test pit logs; and

Sorchole and test pit logs; and
Groundwater level measurements at the boreholes and test pits.
Discussions
Water Levels
Kantey and Templer dritled four boreholes at the River Club as part of the geotechnical
investigation. The depth of the boreholes range between 7.8 m and 16.3 m . Figure 1 shows
the berehole positions (yellow squares) , the borehole positions (yellow squares), and the measured water levels are shown in MAMSL.
The water levels range between 1.62 and 2.02 mamsl. The blue squares are the water levol at the Llesbeek and Black Rivers and range between 1.28 and 1.65 mamsl. The groundwater levels at the River Club measured at the deeper boreholes are higher in elsvation than the water tevel in the Rivers, indicating groundwater flow towards the Rivers. It should be noted
that these boreholes were drilled into bedrock and could possibly represent some piezometric
level influence of a deeper aquifer.

0

 Figure 3 shows the surveyed water levels for the Raapenburg Wetlands and adjacent Rivers.
The results indicate that flow is from the Black and Liesbeek Rivers to the Wellands. It is also
noted that the water levels measured in the wetlands are higher than the water levels measured noted that the water levels measured in the wetlands are higher than the water levels. measured
at the test pits and are therefore considered to be upgradient from the River Club.
The Electrical Conductivity of the groundwater, wetlands, Liesbeek River and Black River were
meastred, and the data is presented in Table 1. Tha EC of groundwater and the Wetlands are

Table 1: Measured EC (ms / m)

Water Type	$\mathrm{EC}(\mathrm{ms} / \mathrm{m}$)
$\mathrm{BH1}$	2985
BH 2	4099
$\mathrm{BH4}$	851
Black Rker	110
Liesbeok River (canal)	35
Llestbeek (Back Water)	$53-858$
Raapenburg Wetland	2800

SRK Consulling

Electrical Conducthity

Table 1: Measured EC (mS/m)

Water Type	$\mathrm{EC}(\mathrm{ms} / \mathrm{m})$
BH1	2985
BH2	4099
BH4	851
Black Rlver	110
Liesbeek River (canal)	35
Llesbeek (Back Water)	$53-858$
Raapenburg Weiland	2800

SPECIAUSTAVIFAUNAL (BURD) REPORT
Report provided by Dr Tony Willarms and the Liesbeek River Cabal. Berkley Road road reserve.

This report was based on a study area comprising the entire area as defined between Observatory
Following this input, the study area was redefined as excluding the SKA site and extending only to the
Given the low sensitivity of the site from a bird perspective, the specialist was not asked to revise this

[^16]There is insufficient data to comment with confidence on the nature of surface/groundwater
interaction, as the river water levels are higher than groundwater levels, but the EC of the rivers interaction, as the river water ievels are higher than groundwater levels,
is considerably lower than the groundwater. It would therefore be expected that if there was
inflow from the rivers to the wetlands that a much lower EC would have been recorded at the
wetlands.

Bruce Engelsman Pr Eng Pr

executive summary

2.2. AREA DEMARCATION

For convenience and clarity this report is based on consideration of the RCA in terms of four areas. These areas
For convenience and clarity this report is based on consideration of the RCA in terms of four areas.
are: 1) the "Entry" area south of the River club build ares (FIE. 31; 3) the "Rough" the currentily un-manicured area of infill between the Golf Course and the junction
 and Rough areas.

FIgs. 1 \& 2: The Entry orecs: This is effectively sterile for brrds except where there are thickets thought these
are too smal in orea to support more than offshoots of brrds from the better vegetoted observatory orea

Fig.4: Part of the Rough orea - currently unused, except for occaslonal dumping.

1 INTRODUCTION the intention of undertaking the development of commerclal buildings on part of the club area. Apparentiyt the concept is for an office eprck. At thictage

This blrd report has been commissioned to document the current 1) status and importance of birds relative to local and regional contexts: and 2) habitats in the RCA of importance for birds. In addition to 3) indicate opportunitles and constraints to gulde the future planning of development and provide recormmendations tor the layout and footprint.

2 THE BASIC APPRAISAL

and canal branches of the Llesbeek River and their conlunction with the slack kiver. These waverboodies, thowen peripheral to the RCA property, are the dominant environmental factors that have affected the past, and will have a substantial Impact on potential future,
develomment of the RCA, as weil as being the key feature for blird in and around the RCA.

The waterbodies which border the RCA are subbect to different fiow resimes. The Black Rlver results from high lowland ground water ievels, now coupled with infiow from urban run-off and the upstream Athione

 into twe waterlines a short distsence uspstream of the RCA. Moss flow is now in the canal which runs along the southe eastern side of the RCA. Flow through the ori final channelt, that torms the northe-esst boundary of the RCA is now greatly reduced. One result of the reduced fiow is shallowing of the
by, largely allen, qquatic plants that now block. parts of the waterbody.

Flooding: The RCA Ales Just inand of regular tidal influence. The RC area must formerty have been a low flloodiain about 1 mabove normal flow / ecuiviventent th the opposite bank of the Black River). Formerly the terrain
and vegetation would have been bo-engineered by hippopotamuses. Downstream there would have been and vegetaton would have been blo-engineered by hippopotamuses. Downstream there would have been
esstuarine eonditions where during high flow the river could spread over adjoning coastal lowind. The former

 which is the first downstream area where the river has an opportunty to verrfiow. As a resslt of continued
giobal warming sea level will ise so there an increasing frequency of flooding can be expected in these lower

To reduce the threat of flooding the $R C$ area has been progresslvelve elevated overe the years by inflll. This has continued to recent times. Desplte the infill the water table remalns high across the RcA. Probably it is
elevated in part by the ciay substrate which underies the infll. The heightened water table facilltates flooding
 the RCA. Flood risk has been a malor constraint on past development of the RCA hence the lack of former
building development and the restriction to to ts use for a golf course. Altematively, flooding can be seen as

Fig. 7. The Llesbeek Canal peripherv: sterlle edges an ugly corrugated "wall". Ainds from the more naturally
vegetated Observatory shore probably range into the few patches of appropriate hobtat in the RCA

In the overoll River Club area. Note the fioodplain level of the opposite bank. This probably indicates the
In the western Cape waterbirds tend to disperse to ephemeral wetiands as soon as winter rains cause are likely to be lower than would occur in the summer when a flematerbirds seen during the two visits waterbirds are restricted to the use of permanent wetland areas such as the river channels around the RCA.

The current significance of the RCA for birds resides in the attraction of the peripheral waterbodies for The current significance of the RCA for birds resides in the attraction of the peripheral waterbodies for influenced by the avaliability of wetland habitats in the Raapenberg Nature Reserve which is located on the opposite bank of the lesbeek canal. The major drawback of the area for waterbirds, despite reasonable foraging areas and apparent food svallablitity, is the lack of safe, undisturbed breeding habitat for the larger species. This situation applles along the greater part of the two rivers. The nearest significant breeding populations of larger waterbirds are at Intaka island in Century City ond at Rondeviei, near Grassy Park.

2.4. IMPORTANCE

The total area of wetlands remaining in the Western Cape is less than 0.5% of the province. The junction of the Llesheek and Black River chonnels is a focal point in the wetland systems of central-north Cape Town. The conjoined Black-Llesbeek River is ecologically linked via Zoar Viel to the Diep River system that extends
northwards to beyond Malmesbury and includes the Rietviel nature reserve, a reistered int northwards to beyond Malmesbury and includes the Rietviel nature reserve, a registered internationally
Important Bird Area (IIBA). The only other significant wetlands in this centre-north area of Cape Town are Important Bird Area (IIBA). The only other significant wetlands in this centre-north area of Cape Town are
at or near Century City: intaka island nature reserve wetlands; a large detention "pond"; and, fust east of at or near Century City: Intaka island nature reserve wetlands; a large detention "pond"; and, fust east of
Century City, the pan between the N 1 and the rallway line. The wetiand system of southern Cape Town based on the Faise Bay Eco-park (Rondeviei-Seekoeviel-Strandfonteln-Sandviel and assoclated streams) is within ready flight distance for most waterbirds that use the northern Liesbeek-Black-Dlep river wetlands. The importance of the RCA for birds is in the open water and the abutting waters-edge habitats which
together provide a range of micro-habitats for speclalist foragers.

The majority, 21 of 33 species, of the blrds recorded in the two visits were related to wetland hablats, and
these included several specles of provincial conservation interest in eddition to the these included several
conservation species.

The Cape Bird Club has an outing to the area planned for 18 August. This indicates established appreciation of birds in the riverine areas of the RCA. Members of the conservation committee of this blrd club are lively to represent Birdulfe South Africa as an I\&AP for any pre-development EIA process.

The greatar River Club area has been both transformed and substantially diegraded relative to the predicted Club area, other than the open water bodies, that can be currently consldered Important from a blrd perspective although semi-sensitive habltats abut the area on the outer banks of the two defining water channels i.e. the Raapenberg Nature Reserve and the strip of land between the Culemberg rail-pard fance and the Llesbeek channel. The only patches of habitat currently within the RCA that merit preservation are the trees on the palm istat opposite the bird hide and the willows along the canal (see Figs. 10 and 213).
Other isolated trees along the river bank are also of value as perches.

出
ii) Creation of a mosaic of managed wettand habitats in part of the existing "rough" area to reciprocate the ii) Creation of a mosaic of manazed wettand hablatsis in part of the existing "rough" area to reciprocats the
Raapentberg Nature Reserve and especially to provide needed breeding places for waterbirds at this nodal

Social benefits: The aprons and wildilife habtatas will provide Improved aesthetics. Provision can be made within the apron for ssie recreaction. both hactive and d passivive, improveveding fort property occuplers as well
as through controiled access for the local public, schoolts, and pensioners. 3.2. COST ISSUES

II sections of the RCA are to be set aside for environmental "compensatton" the developer witl seck legitimote and sociol features.
a) Readier/ less contested, foster, planning approval which can save litigation, and retain investor interest
b) Higher sales/rental values from properties that overiook water and natural habitats (as known from Century City).
c) Vegetation masking of uglier external urban vistas - e.g. Culemberg, rail-vard - will increase
d) The positive image from demonstrated environmental and social responsiblity will make it
e) Property levies to a Property Owners Association which will fund management of the nonfootprint areas.
f) A small entry fee charged for public access sto ensure an acceptable standard of visitor i.e. no

These suggestions imply a reversal from the current, central area focused, approach to management

the value, with considerable financial rewards, from provision of natural waterside habitats.
Promise an Environmental Management Plan - Create an Independent advisory committee to pre-
empt/ represent broad IAP Interests. This should be formed before planning approval is sought. emper represenh bruad Experince is hat such a committee, ff taken into confidence by the developer., tends to act to oositively
 representatives rrom the city conservation// biodiversity section and the Friends of the Lesbeek (how
representative of the local concerned publlc?), with appropritet/sultably senlor representatives of the
 at least quarterty but deally monthly especially through construction phase when short-term changes
need to be consldered.
2.6. OPPORTUNITIES Birds focus: Birds are he mosteally apprased of the overalil RCA for birds. Glven the transformed nature of the entire area almost any action to improve the "natural" environment will be beneficial. To Improve the area for birds (as as aurrogate for the health of natural
environments as well as for other wildille) would, as a sole alm, not be cost effective nor worthwhile for the
 development. How birds can benefft from environmental and assoclated soclal values is considered in Section 2
of this report.

Habitat benefits for blrds usually provide profft for other, less often appreciated, forms of wildife. This raport suggests how, by creating managed "natural" habitats that are attractive to blrds the Periphery and Rough areas cen be made more attractive as a green amenity.

3 COST COMPENSATING ENVRONMERTAL OPPORTUNITES
3.1. THE PLANNING APPROVAL STAGE

Planning approval: Appilication to develop a green area beslde wetlands and onature reserve will require an EAA, Objections are likely from environmental LRAPs: city conservation authoritles; Brrdiffe South Altica
through the Cape Bird club conservation committee; and from the $N G O$ Friends of the Llesbeek. Conservation Hrough the cape Birre Club conservation committee; and from the NGO Friends of the Llesbeek. Conservation
groups tend to be snt-ldevelopment. The objections relative to environnent 1 ssues, and thhs "bird" report, are
likely to fall under four categories.

1) The affects the proposed developments may have on the functioning of the existing waterbodies
2) Loss of potentially valuable wetland -associated habitat: through the footprint as well as 3) Possible negative carrv-over effect on birds in the Raapenberg Nature Reserve which may lose Possible negative carry-over effect on birds in the Raapenberg Nature Reserve which may lose
foraging areas in or adjacent to the RCA
3) Perception that there will be loss of this urban "green lung", even though, for the non-golfing
public. this is largely visual and mental feature.

Pre-emption of these ilikely objections can hasten planning approval - with accordingly reduced costs. Pre-emption requires pro-active planning to melliorate or negate the ebjections. To do so some ervironmentat considerabie monetary value, to the proposed development, as well as, incldentally benefif birdilfe. Hence
the following.

Water functioning: This topic pertains to freshwater expert(s) \& geo-engineers. Here it is assumed that there will be little change to the status quo and that any changes will be positive in terms of wetland
functloning, increased flow in the liesbeek channel (not canal) will be benefictal to this outer boundary of the property.

Widdife habitats \& waterbirds: Responses strongly urged are for

1) Provision of an apron of natural habltats between bulldinges and riverine waterfinnts

Philosophy: Research has shown that, in a hospltal of which one side faces greenery and the other side buildings, patients facing greenery recover quicker, and with less medication, than those in wards
facing buildings. The manager of an offlce facing onto the intaka island nature reserve in Century City has stated that his staff now work longer, and more productively, than they did in their former city overseas has demonstrated that the new generation of entrepreneurs has strong appreciation tor environmental issues and of their social responsibility and, other things being equal this affects their consideration of where to locate their businesses. The ambience of the locale is an important aspect of this.

Changes in urban philosophy: There have been changes in preference from former "straight and sterile" and "concrete or kikuyu" landscapes to a more natural situation with more curves and greater have been treated negatively. Thls attitude needs to switch to appreciation of the rivers as mator benefactors of the proposed development, not least through provision of a "burglar barrier". This requires a shift in attitude from inward to outward conslderation of the RCA. .

Re-sculpturing \& landscaping: This will be necessary to reduce the flooding risk and to accommodate roads and bulldings. In business parks, except for smail private areas around the ground floor, most Landseaping of communal ground in the RCA must be seen as a continuum, from formal horticulture
 plants have the beneflt of using less fertiliser and water (except for the initial period after planting) and
so reduction in maintenance costs. so reduction in maintenance costs.

Flood avoidance: The key to structural development on the RCA is reduction of the flood risk. This can
be most readlly achieved by raising the ground level of the area with buldings and their services to be most readlly achieved by raising the ground level of the area with bulldings and their services to above the 1 in 5 year flood ilmit. A considerable amount of infill materlal will be required to achieve
this. Transport of fill material fromoutside the RCA will be very expensive. This cost can be considerably this. Transport of fili material from outside the RCA will be very expenslve. This cost can be conslderably
offset by excavation of the Infll already used in the "Rough" area and relocating it strategically to raise the afea where buildings will be constructed. The resulting excavations can be re-sculptured to create a serles of new peripheral wetiands (sce suggestions below).

The flood risk is greatest next to the existing water channels. This risk can be reduced by setting bulldings etc. some way back from the channels and creating a protective, anti-flood berm between the structures and the water-bodies. The berm and the area between it and the water channel is hereafter referred to as an Apron. The aprons can be most readily developed abutting the Black River and the
Llesbeek channel.

Views: The water channels and floed avoidance apron will enforce spacing between bulldings on the RCA and the neighbouring propertiles. This will create views of varying character. These views are
potentlally important selling factors. They offer quite different prospects from those of normal, tightly constrained, urban office developments. The prime views are to the west, towards Table Mountain. The southerly view will be onto the Observatory. To the east the view is across the Black River to the
MS. The least desirable is view is towards the Culemborg rallyard.
\%

torsion
disturbance; and b) o wheelchair suitable walking trail through bush habitat. Note the passing boy and the sense
of explomiton created by the effect of the trail winding out of sight. Both these sorts of features would be appropriate for the outer, relaxed, stall in the apron.
Edutainment values: The social value of the apron environments would be substantially raised if, at intervals, attractive signage is installed that interprets occasional features of the natural environment. Further interpretation panels would be provided in the bird hides atc, within the new
wetland habitats area (see below). An education/interpretation laps, as well as walkthrough aviary to enable close up viewing of birds, might be considered.
New wetland habitats: Excavation of Infill from the outer, waterside, part of the Rough area could create a series of new wetland habitats providing water of different depth in each of say three wetlands with water levels controlled by pumping from the Black River and using controlled culverts to manage water; a shallower reedy water; and a marsh. With peripheral reed/sedge beds these wetlands should
provide an ideal group of habitats to attract a diverse range of wetland birds. provide an ideal group of habitats to attract a diverse range of wetland birds.
Provision should be made to enhance the likelihood of waterbirds breeding i.e
Provision should be made to enhance the likelihood of waterbirds breeding i.e. through 1) provision of
open vertical embankments in which kingfishers and martins can burrow their nests; 2) a branch isle open vertical embankments in which kingfishers and martins can burrow their nests; 2) a branch isle
breeding platform to attract cormorants, darters and lilies; 3) and upright sticks set in the water on which kingfishers can perch. An open dryland area beside the deeper water habitat will attract birds to rest on during the day, Observation hides or screens can be located near these special features so that the public can obtain close looks, and photographs, without unduly disturbing the birds. See Figs. 18-
20 for examples from Century city of how the new wetlands might look -all the Century City photos 20 for examples from Century CIty of how the new wetlands might look -all the Century City photos
are of artificially created habitats developed mainly in the first five years after the start In 1996. A 4)
wooden observation tower beside the Black River would please visitors. It would enable observations wooden observation tower beside the Black River would please visitors. It would enable observations into both the new wetlands and Raapenberg nature reserve. This would also facilitate surveys of water reciprocal habitat on the "point" area of the RCA would greatly increase the wlidilfe value of this area
neat and simultaneously raise the value of Raapenberg nature reserve as part af a larger total area for
wetland birds. These new habitats can be considered an offset against former loss of habitat through wetland birds. These new habitats can be considered an offset against former loss of habitat through
infilling of the floodplain. Even small areas of wetland habitat, as well as riparian vegetation have high
biodiversity value. Rich aquatic Insect life subsidises animals in appropriate immediately adjoining biodiversity value. Rich aquatic insect life subsidises animals in appropriate immediately adjoining
habitat.

fig. 14. What the peripheral area might resemble with appropriate planting - a pood, near continuous bushy habitat for bIrds as well os being vesthetically pleasing to the public. Note the LIberty Life offices backed from, but overlooking, this
area in Century City. Contrast this view with that of the current RCA pertpheral pictures (figs. 6 \& 7). Gaps in the bush
 Fig. 15. A public viewing unit -constructed whit "plastic wood". Not all viewing aras need be so fancy though decking is
important in wet situations where heavy treading would soon result in a muddy mess.

g and archlves: A natural/ environmental aras plan is required from before planning val. Planting etc. In the apron should commence as soon as approval is granted. The plants can re whilst construction is taking place so that the visual value is there when the properties are ready sale or rental. It is important to take photos across the pre-construction phases and at regular vols across and after development. Regular (ideally monthly) bird surveys are needed to document ges and see to what extent envinonmental targets, using birds as surrogates, are made. ional ideas for consideration: Planting thom trees as these encourage terrestrial blrds to breed ety. The riverine borders constrain terrestrial non-volant predators but attention would have to Id to aquatic predators, notably water mongooses. One aim should be to foster populations of nd's specles known to be under severe stress in and around Cape Town - Greater Palinted Snipe, ard Toad etc. Iusion: Appropriate development of the RCA for an office park of 2231 century onmentally conscious standards will cost multi-millions of rands. The costs of developing the osed natural apron, neiv wetland habitats, and suggested recreational/ educational features would bly cost less than 1 million. This cost, and the cost of lost developable area, can be more than ensated from the: reduced flooding risk; raised amblence; and so value of the overall site for rity sales or rentals; as well by pre-empting most, if not all, environmentally based objections that be ralsed at the planning application phase. The suggested environmental developments will ly enhance the RCA for birds and water-related wildife in general.

Fig. 20. Branch islets set in permanent waterhodies are keenly valued by waterblrds as safe breeding sttes. On
such sofe sites the birt's readily tolerate humans watching from relotively close quarters. Experiente hos shown
that the istets could have been erected considerably closer to the bird hide. Thls would have provided an even

t th

[^17]After research into seabirds in the UK and Norway and qualifying as a Master of Science (Ornithology) from the University of Sheffield : Joined the FitzPatrick institute for African Ornithology at the University of Cape
Town. Over nine years I was senior researcher responsible for the seabird programme at subantarctic Marion isiand. I spent 2.5 years on the island during two vists. This led to publication of 21 per-reviewed sclentific papers and the award of my Doctorate from the University of cape rown. As the programme
funding ceased in 1982 I transferred to the State Museum in Windhoek as curato death of death of the former ornithologist for the then South West Africa (now Namibla) Department of Nature
conservation I took up that position which held until in 1988 .

In 1987 the (old and larger) Cape Province Department of Nature Conservation took over management of most of the former guano lslands. Based on my seabitd experience I was recruited and, though in charge of research at 16 islands spread from Algoa Bay to the Namlb coast, I was stationed at Walvis Bay. In 1994 senlor ornithologist for the nature conservation department (now Cape Nature) of the newly areated Western Cape Province.

My first task was to appraise the status of birds in the new province. It was immediately apparent that seabirds and water-felated blds were those most at risk as coast and wetlands together form less than 1% of the total area of the province. Not only were these environments "rare" but they were also subject to
greater human pressures than other provincial environments.

I focused langely on the wetlands and waterbirds. Accordingly i became Cape Nature's representative and on the management advisory commiltees for the: Paarl Bird Sanctuary (sewage works) from 1994-2004; Rletvel Nature Reserve 1994-2014; and Intaka Island in Century City (from its initlation in 1995 to present).
In addition I worked on survevs of waterbirds at Theewatersionf In addition I worked on surveys of waterbirds at Theewaterskloof, Bot Rlver Lagoon, De Hoop Vlei, Rocher

In a pre-retirement period of secondment to the Avian Demography Unit (ADU) at UCT I used data from
the Co-ordinated Waterbird Count (CWAC) data base st the ADU to assess the overall popplation and the Co-ordinated waterbird Count (CWAC) data base at the ADU to assess the overall population and conservation status of the waterfowl, waders, shorebirds and see-birds in the entire province as well as
using ecological knowledge to assess the global population status of four species of waterfowl endemic to southern Africa - Cape Teal, Karoo Shelduck, Cape Shoveler, and the southern African race of the Black-
necked Grebe.

I considered It vital for the conservation of provincial waterbirds that public apprectation of the wetland habitats be ralsed. Hence I was a prime instigator of a proposed R 20 milllon wetland edecation eco-centre
for Rletvlei. I motivated this with the (then) Blaauwberg Munidpality, The municipalty Instited a for Rletvlel. I motivated thls with the (then) Blaauwberg Municipality. The municipality Instigated a R
250,000 ElA report and also sent me on a fact-finding mission to the UK where over a three-week period, Thera I visited 13 major wetland eco-education centres collecting ideas for features that coutd be applied in Africa. Unfortunately, although most of the findings of the EIA were positive, It was decided that the project would not be not financially viable, and it lapsed. Subsequently, during attendance at international
symposia, I was able to visit, and get ideas from, wetland eco-centres in north-eastem, south-eastern, and western USA as well as in Australia, New Zealand, and Malaysia.

4 DR WILLIAMS' WATEREIRD AND WETLAND RELATED CV

Appendix E Environmental Importance and Sensitivity (EIS) protocol for wetiands
The method used to assess the EIS of wetlands is a refinement of the DWAF Resource Directed Measures for Water Resources: Wetiand Ecosystems method (DWAF, 1999b) and Rivers method (DWAF 199c). It Includes an assessment of ecological (e.g. presence of rare and endangered fauna / flora), functional (e.g. groundwater storage / recharge) and socioeconomic criteria (e.g. human use of the wetland).

Scoring of these criteria then places the wetland or river in an importance Class (A-D) (see
Tables E1 and E2).
Wetland importance Class integrating Ecological mporta
Wetland Importance Class integrating Ecological Importance and Senslltvity, and functional and soclo-

 Representitive of wollonds that:

- support key populations of ra
- support key populations of rare or endangered species;
- have a high level of habitat and species richness;
- have a high degree of taxonomic uniquemess and/or hoblera

- is a cructal avifiaunal mingratory node (e.g. RAMSAR wellands),
may provide hydraulic buifering and sediment retention tor
large to major tivers that originate largely oulside of urban

$\begin{aligned} & \text { are of exteme importance for conservation, research or } \\ & \text { education. }\end{aligned}$
High
Representative of wellands that:
Representative of wellands that
- support populations of rare or endangered spocies, or
fragments of such poputations thal are present in other sunilar
and geographically-adjacent wetlands;
fragmems of suchlly-adjacent weillands;
and geographical
contain areas of habitat and species fichness;
contain elements of taxonomic uniqueness and/or intolerant
laxa;
contain habitat suitable for speciic species (e.g. physiognomic
features):

provide unique habitat (e.g. salt marsh or ephemeral pan;
spawning or nursery environments, heronries);
spawning or nursery environments, heronnies);
- may provide hydrautic buffering and sediment relention for
rivers that originata largely oulside of urban conurbations, or
- have resundwaler rechergeddischarge comprising

The Freshwater Consulting Group
APPENDIXE
Proposed redevelopment of the River Club, Observatory:
Endronmental Impact Assessment: Biodiversity
ENVIRONMENTAL IMPORTANCE AND SENSITVTT (EIS) PROTOCOL FOR WETLANDS And RIVERS
Proposed redevelopment of the River Club, Observatory:
Envtronmental Impact Assessment: Biodiversity

Determinant	Guidelines And Description	Scoring Guidelines
	endangered should be included here. This assessment should also consider local, Provincial and National scales and should be Ireated separately from rare and endangered species (i.e. the same species should nol be considered). The assessment should be based on professional knowtedge. Fynbos biome: Within this biome all the biota would be unique. The rivers ware therefore assessed within the conlext of the biome for the Westem Cape (Luger 1999a).	High - rating $=3$; One or mose papuation (or taxorn) jurged to be unique on a Provincialuregional scale. For the Western Cape - rated on a sub-regional scale (l.e. northem, weslem, southem and karoid). Moderate - rating $=2$; More than one population (or laxon) Judged to be unique on a local scale. Marginal - raing=1; One population (or taxon) judged to be unique al a local scale. None - rating=0; No population (or taxon) judged to be unique atany scale.
Indoterant biola	Intoleranl blota includes those species (or taxa in the case of invertebrates) that are known for derived or suspected) to be intolerant to decreased or increased flow condifions as well as changed physical habital and allered water quality condibions related to decreased or increased fows. As litle experimental infomation is available on the intolerance of indigenous biota, assessment should be based on protessional judgement. Kwazulu/Natal: There is no quaternary without low and averywhere that there is flow an invertabrate community dependent on llow develops. This woutd mean that every quaternary should be rated highly with respect to this criterion. The selution to the problem was to use only fish (Chulter 1999).	Very High - rating $=4$; A very high proportion of the bita is expected to be dependent on permanenty flowing waier during all phases of their life cycle. High - raing=3; A high proportion of the biola is expected to be dependent on parmanenlly fowing water during all phases of their life cycle. Moderata - raling $=2$; A smal proportion of the biota is expectad to ba dependent on permanently fowing water during some phases of their life cycle. Marginal - rating= 1 ; A very low proportion of the biota is expected to be only lemporarijy dependent on ifowing water for the compleletion of ther tite cycte. Sporadic and scasonal low events expected to be sufficient. None - rating 0 ; Ranely if any biola expected wilh any dependence on flowing water.
Speciestiaxon richness	Species/axon richness can be assessed on a comparative basis according to a local, Provincial or National scale. Strictly, this kind of assessment should be based on the grouping of ecologically similar rivers. However, such a system is still under development and assessment will again to have to be based on professional judgement.	Very High - raling $=4$; Rated on a Naĩonal scale. For the Weslem Cape - rated on a biome scale. High - raling=3; Rated on a Provincialtregional scale. For the Westem Cape - rated on a subregional scale (i.e. northem, western, southern and katroid). Moderate - rating $=2$; Rated on a local scale. Marginalfow - raling $=1$; Nol significant al any scaie. (a rating of none is not appropriate in this context)

Table E2		
Wetland Importance Class integrating Ecological Importance and Sensitivity, and functional and sociocullural importance modifiers.		
Determinant	Guidelines And Description	Scoring Guidelines
Rare and endangered biota	Biota can be rare or endangered on a local, Provincial and National scale. Useful sources for this information include the South Arrican Red Data Books that are suitable for assessment on a National scale. However, species (or taxa in the case of invertibbrales) can be ram or endangered on a Provincial or local scale but not on a National scale. Professional judgement needs to be utilised in such cases.	Very High - raling=4; One or more species/laxon judged as tare or endangered on a National scale (i.e. SA Red Data Books). High - rating=3; One or more speciesilaxon judged to be rate or endangered on a Provinciallregional scale. Moderate - rating=2; More than one species/laxon jurged to be rare or endangered on a local scale. Marginal - raling $=1$; One speciestaxon juriged as rare or endangered at a local scale. None - rating $=0$; No rare or endangered speciesitaxon at any scale
Unique biotue	Endemic or uniquely isolated species populations for toxa, i.e, in the case of invertebrates) that are not rere or	Very Hhgh - raling $=4$; One or more population (or taxon) unique on a National scale. For the Westem Cape - rated on a biome scale.

Proposed redevelopment of the River Cubb, Observator:
Environmentanal Impact Assessment: Biodversty
Environmentad Impact Assessment: Biodversty
APPEMDIK F
SPECIALISTIMPACT ASSESSMENT METHODOLOGY
Methodology as provided by SRK Consulting

Proposed redevelopment of the Rlver Club, Observatory:
Emvironmental Impact Assessment: Blodiversity
IMPACT ASSESSMENT METHODOLOGY FOR EIAS
The signilicance of all potential impacts that would resulit from the proposed Project is determined in
order to asslst decision-makers. The significance
order to asslst decision-makers. The significance rating of Impacts is considered by dectislon-makers, as
shown below.
shown below.

- INSIGNIFICANT: the potenttal impact is negligible and will not have an influence on the decision
regording the proposed actlvity.
- very cow: he potentel
decision regarding the proposed a celvivity.
- LOW: the potential impoct may not have
Low: the potential impocet may not have any meaningful influence on the dectsion regarding the
prooosed activit.
Mroposed activity.
- HIGH: the potential impact will sffect a decision regarding the prooosed otivity
- HIGH: the potential Impact will affect a decision regardlng the proposed activity.
- VERY HIGH: The proposed actvity should only be approved Under special clrcumst

The significance of an impact is defined as a combination of the consequence of the impatt oc
and the erobablilty that the impact will occur. The signififcance of eachidentrified impact ${ }^{10}$ must be rated according to the methodology set out below:

Step 1 - Determine the consequence rating for the impact by determining the score for each of the three criteria ($A \cdot C \cdot C$ listed below and then adding them ${ }^{20}$. The rationale for assigning a specific rating.
and comments on the degree to which the Impact may cause ifreplacenble loss of resources and be irreversible, must be included in the narrative accompanying the impace rating:

| A.cerl | Conifined to project or study area or part thereof fe.g. site) | 1 |
| :--- | :--- | :--- | :--- |
| Regional | The region | 2 |

| Regional | $\begin{array}{l}\text { The reglon, which may } \\ \text { cadastral, catchment, topographic defined in varlous ways, e.g. }\end{array}$ | 2 |
| :--- | :--- | :--- | :--- |

(Inter)	Nationally or beyond

1
3

Medium	$\begin{array}{l}\text { Site-ssecific and wider natural and/or social functions and } \\ \text { processes continue albert in a modified way }\end{array}$

C. Duration-the toceesses arem eververely which the the mpocte will be experienced ond fis rea

Long term	More than 15 years (sstate whether Impact is is ireversible)

Combined Score $(A+B+C)$	$3-4$	5	6	7
Cond				

$5 \begin{gathered}6 \\ 0 \\ 0\end{gathered}$ | Consequence Rating | Very low | Low | Medium | High | Vervhil |
| :--- | :--- | :--- | :--- | :--- | :--- |

Page 6: November 24919

The Freshwater Consulting Group
Environmentad Impact Assessment: Biodversty
APPEMDIK F
SPECIALISTIMPACT ASSESSMENT METHODOLOGY

Step 6 -identify and describe practical militgation and optimisation measures that can be implernented effectively to reduce or enhance the significance of the impact. Mitigation and optimisation measures must be described as either:

- Essential: best practice measures which must be implemented and are non-negotable; and, Best Practice: recommended to comply with best practice, with adoption dependent on the
proponent's risk profile and commitment to adhere to best practice, and which must be shown to have
 Essential mitigation and optimisation measures must be inserted into the completed Impact
assessment table. The impact should be re-assessed with mitigation, by following Steps 1-5 again to
 proposed mittgation measures. Best practice measures must also be inserted into the impact
assessment table, but not considered in the "with mitigation" impact significance rating.
Aonpue d: A compnecteu mpact assessment cable

Essentlal mitigation measures:
Essentlal mitigation measures:
$\quad \mathrm{Xxx3}$
Best practice mittgation measures:
Best practice
- $\quad \begin{gathered}\text { With } \\ \text { mitigation }\end{gathered}$ Step 7 - Summarise all impact slenfificance ratings as follows in executive summary:

Example 4:
Step 5 - Stata level of confidence in the assessment of the impact (high, medum or low).
Depending on the data avallable, you may feel more confident in the assessment of some impact than
others. For example, if you are basing your assessment on extrapoleted data, you may reduce the
confidence level to low, noting that further ground-truthing is required to improve this.
Example 5 :

Ver 6: November 2019
The Freshwater Consulting Group

Dr Tony Williams
 Otherwise 1 am happy with those comments to querics raised that migh imping on the assessment there is no reason to query the validity of the findings of that assessment Given that no substantive bird-impacting e for the quasi-natural riparian edges. The greater part of the site has been highly modified with the result of simplified habitats
of low importance for birds. My response to the comment is as follows:
The greater part of the site has been highly

 Marius Burger If further confirm that you may amend the title of my report from Draft to FINAL.

Appendix G3:
 Surface Water Hydrology Impact Assessment

$a k$

Proposed River Club Redievelopment	$\begin{array}{l}\text { 12 March 2018 } \\ \text { Revision: } 3\end{array}$
Investigation into the impact of the	Rofornace: 112405
proposed redevelopment of the River Club	
on flooding and flood abatement in the Salt	
River Catchment	
Liesbeek Leisure Properties Trust	

Disclaimer
I

[^18]The City of Cape Town (City) agreed that reference to other accepted studies would be necessary as
these address some of the above-mentioned objectives.

Literature Review

A review of the relevant tlerature details the following: the history of the site which once formed part of an extensive wetland; the changes to the Cliffy's policies; the effects of urban development, climate
change and sea level rise; seven recent studies relating to flooding in the Liesboek / Salt River Catchments; and which currently conceptualised developments are likely to take place in the vicinity of
the River Club site. The literature review found that:

- The River Club site is prone to flooding by events with a frequency of recurrence of about once in
every 2 to 5 years.
There are a significant number of recent studies that incorporate the River Club site - some of these
studies provide contradictory results. studies provide contradictory results.
There is significant interest in the future
There is significant interest in the future development of the River Club site:
- There are a wide range of stakeholders.
- There are a variety of contradictory 'visions' of what should, and should not be done.
- There have been changes to the City's policies relating to developing within the floodplain.
There is concem that infilling of the River Club site will result in significant increases in flood levels.
Some stakeholders have openly rejected any study that indicates a negligible or insignificant
impact on flood levels.
*There was a need for a detailed analysis of the potential for flooding in the vicinity of the River club
site.

Method of investigation
To assess the potential impacts of the proposed devalopment on flooding in the vicinity of the stite, Aurecon developed a saries of PCSWMM and HEC-RAS two-dimensional modets. These models were used to determine the existing (status-quo) flooding and the extent of flooding if the proposed
development were to be allowed - and thus any changes as a result of the proposed development. A range of development and miligation scenarios were considered. These include: pre- and postdevelopment flood models; the effect of widening the Salt River Canal; the effect of sediment build up and the sensitivity of the models to different input parameters. As far as possibte this analysis has been and the sensitivity of the models to different input paramelers. As far as possibte this analysis has been
conservative. Furthermore, it has taken account of the full range of development proposals for the area. Results and Conciusions

This study has reviewed seven relevant studies, and has undertaken extensive modelling with both HEC-RAS and PCSWMM 2D. The raport prosents (Chapter 4) the resulls for each scenario that was considered, without making definilive findings or conclusions due to the complexily of the site. Therefore,
it is necessary to consider all the separate findings from the different scenarios together before drawing any definitive conclusions. Considering any 'question' or 'issue' raised in isolation may lead to a misinterpretallon of the resulls. Furthermore, hydrology and hydraulic modeliing should be consldered
as a tool for analysing potential impacts and scenarios, and as this is not an 'exact science', rather engineering judgement and experience is important in interpreting the results. Therefore, Aurecon
involved three of its staff who have extensive experience of the circumstances at this site in order to involved three of its staff who have extensive experience of the circumstances at this site in order to
ensure that the analyses were underiaken and interpreted in the most reasonable and appropriate

Based on a review of all the avallable studies, the extensive modelling, and engineering judgement, it is Aurecon's opinion (as stated in Chapter 5) that:

- The results (magnitude of impact) appear to be relatively consistent for each study, even where study
: The development of the River Club, along with the TRUP, PRASA and NRF slies is likely to have an impact on food levels, in the order of $0.01 \mathrm{~m}-0.15 \mathrm{~m}$ depending on the storm recurrence interval and

Were the River Club to be developed in isotation (l.e. TRUP, NRF PRASA were not to be developed). then the impacts on flood levels would ba of a similar magnitude for all recurrence intervats, but less
by approximately $0.00 \mathrm{~m}-0.03 \mathrm{~m}$, than the levals for the scenario where alf the proposed - The differences between the post development scenarios are atso well within the uncertainties of the modeling low

- It is important to note that if any of the proposed TRUP, NRF and PRASA developments were to
be undertaken in isolation, then the resulls must not be interpreted to mean that they would only be underiaken in isolation, then the results must not be interpreted to mean that they would only
have an impact equal to the differences between the post development scenarios for the River
Club, TRUP, PRASA, and the NRF sites together, and the post development scenario for the River Club alone-as indicated in the RHDD.-HV Study. This is because of the complexities of the hydrology
and hydraulics in the vicinity of the River club site. and hydraulics in the vieinity of the River Club site.

The design of changes to the Liesbeek Canal should aim to maintain the existing hydraulic functioning
of the wetland during smaller recurrence interval events. The current proposal would have litte to no
effect, but further detailed design refinements - during detailed design - should be reanalysed. effect, but further delailed design refinements - during detailed design - should be reanalysed. It would be advisable, in consultation with the Fresh Water Consultant, to consider reversing the
intervention undertaken by the TRUPA. Frlends of the Liesbeek and the South African Astronomical
Observatory (SAAO) - as this is likely to increase flows into the welland.
4.2 Impact of the proposed development on flooding in the surrounding urban area 4.3 Impact of the proposed River Club development on the SAAO buildings
Abbreviations

10	One Dimensional
2 D	Two Dimensional
AED	Aírican Environmental Development
CC	Climate Change
CMC	Cape Metropolitan Council
CSRM	Catchment, Stormwater, and River Management 8ranch
DEM	Digltal Elevation Model
DSM	Digltal Surface Model
DTM	Digital Terrain Model
EGL	Energy Grade Line
EL	Energy Level
GIS	Geographical Information Systems
Lidar	Light Deteclion and Ranging
LIPT	Llesbaek Leisure Properties Trust
NRF	National Research Foundation
PRASA	Passenger Rall Agency of South Africa
PRDW	Prestedge Retier Drasner Wijnberg
RH-DHV	Royal HaskoningDHV
R	Recurrence interva!
RSA	Republic of South Africa
SAAO	South African Astronomical Observalory
TRUP	Two Rivers Urban Park
TRUPA	Two Rivers Uitan Park Association
WCG	Western Cape Government
ws	Water Surface Level
m M M Ols	
C	Runoff Coefficlent
ha	Hectares
km	Kilometre
km^{2}	Square kilometres
m	Metre
m^{3}	Cublc metres
$\mathrm{m}^{3 / \mathrm{s}}$	Cubic metres per second
N	Manning's Roughness

Figure 4-5 Maximum extent of inundation for the 100 -year fload (whole madel) . 45
Figure 4-B Maximum extent of Inundation for the 100 -year flood (Vicinity of River Club) Figure 4-7 L.ocations at which flow was analysed
Figure 4-8 Hydrographs at locations where notlce

Hydrographs at locations where nottceable changes in flow were detected ($\mathrm{SQ}=$ Status
quo; $\mathrm{PD}=$ Post development with NRF, TRUP, PRASA, River Club)
Figure 4-9 impact of the devetopment of the hazard of flooding (Whole model) $\begin{array}{ll}\text { Figure 4-9 impact of the development of the hazard of flooding (Whole model) } \\ \text { Figura 4-10 impact of the development of the hazard of flooding (in the vicinity of the River Club) } & 50 \\ 51\end{array}$ Figure 4-11 impact on flooding of possible PRASA escape route during the 100 -year Storm event 52
Figure 4-12 Impact of partially blocking the railway bridge immedlately downstream of the River Club Figure 4-12 Impact of partially blocking the railway bridge immediately downstream of the River Club

site Comparison of the inundation considering the 100 -year flood event in combination with | the 50 -year and 10-year storm surge events | |
| :--- | :--- |
| Figure 4-14 impact of widening the Salt River on the extent of inundation of the 100-year flood | 54 | Figure 4-15 SAAO buildings on the Figure 4-16 SAAO buidings on the edge of the Llesbeek River canal. Dark blue - 3 - buildings are

considered to have possible heritage value Figure 4-17 Impact on flooding during the 2 -year recurrence interval storm evant for various

Figure 4-18 Water surface elevations during the 5 -year recurrence interval storm event for different $\begin{array}{lll} & \text { development scenarios } & 59 \\ \text { Figure 4-19 Overview of how flow enters and then leaves the Rapenberg welland } & 80\end{array}$ Figure 4-19 Overview of how flow enters and then leaves the Raapenberg welland
Figure 4-20 Surveyed water levels in, and surrounding, the Raapenberg wetlands

Fload levels detomened I used in alferent sudies

Table 2-1 Flood levels determined / used in different studies

Table 3-1 Typical Manning's Roughness used in modeffing	8

Table 3-2 Thdar leveis used in modelling
Summary of differences (m) in Water Surface elevation at the different monitaring poits 39 (Figure 4-1) between the exisiling status quo and the post development scenario
(including TRUP, PRASA and NRF).
High level overview of changes in the 1 in 100-year flood characteristics as a result of the
High level overview of changes in the 1 in 100-year flood characteristics as a result of the
proposed dovelopments

AC/4
proposed dovelopments
Signlficance of increased Table 5-1

The effect that developing the River Club site would have on the extent of flooding along the Salt and
Liesbeek Rivers;
The implications that any changes to the surface water hydrology might have on flood levels which
would affect infrastructure and both public and private property in the vicinity of the Sall and Llesbeek荡
The cumuiative impacts of the River Club development and all other likely / planned developments in
the surrounding area; and he surrounding area; and
The potential ecological impacts of developing the River Club site - particularly on the Raapenberg
wetlands and bird sanctuary.
As agreed with the City, reference to other accepted studies would be necessary to address some of
the above-mentioned objectives.

The Liesbeek Leisure Properies Trust (LLPT) currently owns and operates the River Club in observatory, Cape Yown (Figure i-1). LLP proposes to develop the site as a mixed commerial, acquired the services of African Environmental Development (AED) to undertake a flood line determination study and to assess the impacts of the proposed development on the River Club site and surrounding properties. This study considered the flooding in the vicinity of the River Club site as a result Rivers that discharge into the Salt River.

Concumently, while LLPT's scoping studies were being undertaken, the Western Cape Govemment (WCG) were undertaking similar studies aimed at developing a spatial development framework for an area known as the Two Rlvers Urban Park (TRUP) - shown in Figure 1-1. The TRUP area is
predominanlly owned by government (Cify of Cape Town (City) and Westem Cape Government) but predominantly owned by government (City of Cape Town (City) and W.

Following the release of the Draft Scoping Report for LLPT's proposed development a number of queries were raised wilh regard to AED's study titled "Flood Line Determination for the Salt and Liesbeek Rivers at the Cape Town River Club, Cape Town, Western Cape Province, RSA. It was also noted hat there
were differences in flood levels delermined by the studies commissioned by LLPT and by the WCG as well as in the resulis of previous studies commissioned by CGT - undertaken by Ninham Shand (2003; 2004) and SRK (2013).

In 2016 Auracon South Africa (Pty) Ltd was appointed by L.LPT to undertake a peer review of the AED
study. This necessitated a review of the WCG study and of the previous 2003,2004 and 2013 studles study. This necessitated a review of the WCG study and of the previous 2003,2004 and 2013 studles
in order to investigate the identified discrepancies. As a result of the review of these studles it was in order to investigate the identified discrepancies. As a result of the review of these studles it was the extent, if any, of the impact of the proposed development of the River Club site on the flooding of
properties in the areas surrounding this site. This study indicated that the proposed River Club development, in isolation, would have an insignificant impact on flood levels and that there were a number of significant differences between these results and the results of both the AED and WCG
studles.

In 2017 Aurecon South Africa (Pty) Ltd was appointed to undertake a definilive, detalled study of the implications on

This report documents the process and findings of the review of the previous flood studies and of the further investigations carried out by Aurecon. The report also describes the addilional investigations and
provides comment and conclusions about the potential impacts of the proposed development on flooding provides comment and conclusions about the potential impacis of the
and inundation of the River Club sile and surrounding properties.

> II is important to note that this investigation is based on the Cily's latest hydrologic models - SRK (2012). various sub-catchments withln the catchment area of the Salt River and has made proposalis for addressing potential shortcomings. Never the less Aurecon is of the opinion that the Two-Dimensional
(2D) models that have been configured for this study provide a reasonable basis for making judgements regarding the flood levels for boll the pre- and post-development of the River Club site flooding and adjacent areas. This is because the water levels and flow palhs determined from the
modelling correspond closely with observations by experienced Aurecon employees who visited the sites during major flooding events over the last $15+$ years.
1.3 Lirvitations
It important to onote that this in
2.1.1 History of the Salt River Catchment

The histories of the fivers and wetlands in Cape Town are comprehensively documented in Brown \& urbanisation has had on the 'rivers and wetlands' in Cape Town. A. ifterature and intemet search of historic Images highlighted the changes, over the last century, to the environment in the vicinity of the confluence of the Liesbeek, Black and Salt Rivers. These changes are highlighted in Figure $2-1$. Figure
$2-2$, Figure $2-3$ and Figure $2-4$, to provide context for this reporn. Figure $2-1$ shows that historically the Lesbeek and Biscep Rin. Figure 2-1 shows that historically the Liesbeek and Black Rivers flowed into en extensive wetland. By
1958 this had had changed with the intial canallsation of the rivers as evident from Figure $2-3$. In 1960

 on what was previously a more extensive wetliand. The last remnanis of this once exxtensive wetland are now known as the 'Raapenberg Wetllands'. The historic pr

Of interest for this study, is that it is apparent that the course of Liesbeek River changed a number of timas between 1937 and the present. Today the abandoned fiver courss is fed hy limited nunoff from the
adjacent urban area, and the majorily of the Llesbesk River Caichments flow is channelled down the adjacent urban area, and the majority of the Liesbeek River Caichment's flow is channelled down the

Figure 2-4 $\begin{aligned} & \text { Map over } \\ & \text { Rlvers. }\end{aligned}$
2.1.2 Potentlal Ecological impacts The ecological value of the lower reaches of the Lieste con and Dr Day highlighted that the Raapenberg Wetliands (Figure 2-4) are of particular importance and that the change in water depths, particuiarly for intra-year storm events, was of concern as it may impact on the local fauna and flora. The approach to assessing the impact of the proposed development on the Raapenberg Wetlands is de scribed in Section
3.5.

2.1.3 Policy changes

It is important to recognise that over the lasi 20 years there have been significant shifts in policy relating
to the management of stormwater and flooding in the City. Prior to 2000 general practise was to limit development to above the 50 -year flood line (CMC, 2000). ARCUS GIBE (2000) noted that there was no legislation which stipulated whether it was permissible to develop and fill within the 100,50 or 20 year flood plains; and that the City had no by-laws preventing filling of the 50 year flood plain.
Subsequently the City made significant changes to us policies which are presented in the following documents:
$* \ln 2000$
in 2003

- 'Development Control Guidefines in Flood Prone Areas'(CMC, 2000)
- 'Floodpiain Management Guidelines' (CSRM, 2003)

> Aartal footage tratceating the changes botwean $1950-1958$ to the course and structure of the Llesboek
and Black Rivars (Richard,F, 2016)
> Flgure 2-3

Figure 2.2 Aorlal footage indicating the chnnges tetwoen 1937 - 1958 to the course and structure of the Liestoek

which the largest impact on the SAAO would be reallsed. This is consldered to be the case where neither
the River Club, nor the SAAO would have constructed berms (i.e. the status quo in 2012).

Figure 2-5 Extent of tinfiling on alte (outilined in aman\} (Soutce: Googio earth (19/01/2014))

Figure 200 Berm on the South Afrcan Astronomical Observatory (SAAO) side of the Llesbeek Canal - constructed
in 2009

- 'Floodiplain and River Corridor Management Policy' (CSRM, 2009a)
- 'Management of urban stormwater impacts policy' (CSRM, 2009b)

The latest two policy documents, published in 2009, provide the basis for the assessment of require the following:
a Development such as that proposed for the Rivar Club site is required to be elevated above the 1 in 100-year flood line. Future upstream developments are required to ensure that properies downstream of any such
development are not affected, and if downstream properties are affected then the upsiream development would not be permitted in terms of the "Framework for assessment of proposals". F Future developments are also required to manage their runofl so as to not to increase and preferably
to reduce peak flows.

2.1.4 Construction of a berms along the banks of the Llesbeek River

 The construction, in September 2013, of berms and infliling along the banks of the Liesbeek Canal by the, then tenant, of the River Club property has been a contenit they saw large Ross Demolition trucks that "Friends of the Lesbeek secretary, Francine Becker, said they saw large Ross Demolition trucksdumping soll on the river banks. This activity continued over the weekend and up to 10 large ths loaded with soil were observed driving into the River Club in the space of an hour. it seems the River Chub, desperate to deal with flooding, has Mllegally dumped material in and along the Llesboek." In the same article it is noted that "Becker said she spoke to a Rlver Chb representative, Nick Ferguson, who said
it had been decided to cover the bank to make it 'neat and tidy'...'He said he could not wait for it had been decided to cover the bank to make if 'neat and tidy'... He sald he could not wait for

During the scoping phase of the project it became evident that the construction of the berm in 2013 remalns a contentious issue. The extent of inflling for the berm is shown in Figure 2-5. A process with City's legal section is currently underway conceming the construction of berms along the Liesbeek Canal
without authorisation (Construction of a Berm Along the Liesbeek Canal by the River Club, Ret: without authorisa
$16 / 1 / 1 / 11 / 243$).

According to the proponent of the current development proposal, the berm was builit by the previous tenant and is not comnecled to the current ownershlp. A notice conceming the removal of the berm was
issued by the Clity to the Liesbeek Leisure Club (Pty) Lid of which the current owners were not directors issued by the Cly

It is Aurecon's understanding that the process is currentiy ongoing and the resuits of the development application will be considered in determining the course of any further action. During the course of this investigation it became apparent that the South African Astronomical Observatory (SAAO) had constructed a berm on the opposite bank to that of the River Club as indicaled in Figure 2-6. The const
the Clty of Cape Town.

For the assessment of the impact of the infiling on the River Club property the statuis of both berms presents a difficulty in determining the "predevelopment" status quo. Therefore, for this impact
assessment It was decided that the worst-case scenario would be considered"-i.e. the "status quo" for

2.1.5 Climate Change considerations

Human interference with the cllmate system is occuring, and climate change poses isks for human and natural systems' (IPGC. 2014b). Within urban areas, it is generally predicted thal the increase in gliotar temperatures associated with Climate change will be exacerbated as a result of the urban heal
island effect (IPCC, 2014a). Willems et al. (2012) Indicate that ralnfall intensilites are typically expected island effect (IPCC, 2014a). Willtems et al. (2012) Indicate that rainfall inlensilites are typically expected
to be increase by the end of this century (2000) at small urban hydrology scales by beetween 10% and 60% from historic levels recorded between 1961 and 1990 . A recent stormwater master planning report storms by 15% to account for changes in the intensily of extreme events. This was based on an analysis of the potential impact that dimate change might have on rainfall intenstlies in Cape Town, and incorporated into this study.

Other expected impacts of climate change are a rise in the global sea level and increased storm intensilies. PRDW (2010) underlook a study to provide estimates of the expected storm surge and wave selup corresponding $1: 20$ year, $1: 50$ year and $1: 10-$-year frequencless and proviced best and upper esllmaes of sea ievel ins in
PRDW (2010), and used for Royal Haskoning DHN's (RH-DHV's) (2017) investigation of the TRUP sitt. should be used for the current investigation.

2.1.6 The effect of further urban

Urbanisation typically results in an increase in the impervious surface area, which has significant impacts
 The increase in the impervious area associated with urbanisation results in greater volumes of runoff and higher peak flows. Unbanisstion can also result in slgnificant changes in how runoff is conveyed in most urban areas (Marsalek et al., 2006). Historically, nalural channels have offen been replaced with hydrauically fighly efficent concreted channols. While the increase in impervious areas resuils in increased runoff volumes, Fletcher et al. (2008) highlighted that $80 \% 1090 \%$ of the increase in peak
flows can be attributed to the nature of the conveyance network. The impacts of possible uncontrolied and unmanaged urbanisation are also important.

Long-term calchment planning and management is the responsibilify of the Cily, and not the developers of hdividual sties within a catchment that is signiticantly larger than ine individual sites. In he case of has, fortunately, been progressive in implementing two critical policies to manage the impact of urbanisation and densification on flooding wilhin the City. These are tha City's 'Floodplatin and River
Corridor Management Pollcy (CSRM. 2009a) and 'Maragement of urban stormwater impacts policy' Comidor Management Policy (CSRM,
(CSRM, 2009b)-as discussed above.

This report describes the determination of the impacts that the proposed development is expected to
have on properties in If vicintly - in accordance with the policies discussed in Section 2.1.3.
2.1.7 Flooding in urban areas

It is important to recognise that not all fooding in an urban area is necessarily related to the flows in a nearby river. The piped underground stormwater system is typlcally sized for smaller recurrence interval
events stypically for flood magnifudes smaller that than the 1 in 2 -year, 1 in 5 -year and 1 in 10 -year events - depending on the design crileria) (CSIR, 2005). It is usually planned that during larger storm
events (wilh flood magnitudes greater than the 1 in 2 -year, 1 in 5 -year or 1 in 10 -year events -
depending on design criteria) the excess flows will discharge overland via the road network which is
Intentionally designad to serve as part of the surface drainage sysfam (CSIR, 2005). While this may be Intentionally designed to serve as part of the surface drainage systam (CSIR, 2005). While this may be
considered as 'flooding', It is intentional and not related to the flooding caused by flows in a nearby river

Additionally, for small storm events, should the stormwater infrastructure (inlets and/or pipes) become blocked it is expected that stormwater will be conveye
flooding but is often unrelated to the flow in the river.
2.1.8 Perceptions about flooding

In the public discourse - both in media articles and comments submitted as part of the EIA process there appears to be a perception that the River Club site frequenify floods and that the development of
the site "will" have an impact on the flooding of properties in the surrounding area - with some interested and affected parties 'rejecting' any studies that do not indicate this. While $i t$ is correct that the site has important to differentiate flooding as a result of high runoff, and flooding that resulls due to the capacity of the drainage system being limited due to inadequate maintenance and or structural failure.

One specilic question that will not be answered by the modelling and analysis is "Why it is necessary for the River Club to raise itself out of the floodplain, whilst it is not necessary for the surrounding areas
to be raisad above the floodplain (TRUP Assoc, 2017)." This is an important question as il impliclly suggests that if the Rlver Club's proposed development lakes place this will worsen the flooding affecting will not be affected by flooding. Furthermore, il has been suggested that if the proposed development of the River Club is unaffected by flooding this will Increase the impact of flooding of the surrounding
properties, It is therefore important to note:

The reason that there are properties developed on land lower than the existing flood lines is tha historically (see Saction 2.1.3) properties were allowed to be developed within the 100 -year flood
plain. Therefore, properties such as those identfied as being below the 100 -year flood line would developed today, be required to elevale themselves out of the floodplain - as is being required for

The purpose of this report is to assess the impact that the proposed development will have on

2.2 mevious invastigaturans

The River Club and surrounding areas have been the focus of a number of hydrological and hydiraulic (2003 and 2004): SRK (2012): AED (2015) and RHiDHV (2018): ARCUS GIBB (2000), Ninham Shand determined by these studies at the various locations in the vicinily of the River Club shown in Figure

There has been a lack of consistency in the modelling methods and in the resolution at which the upstream catchment area has been modelled. In addition, the more recent models have incorporated
climata change considerations. Theerfore, undertaking comparisons between the different results is not directly possible. On the other hand, it is evident from Table $2-1$ that there are inconsisistencies in the results of the various studies. An overilew of each of these flood line determinations and other relevant
investigations is provided below.

There have aiso been a number of academic research projects that have considered aspects related to flooding of the River Club Site. These inctude Lurie (1954), Giermek (2015) and Fisher--Jeffes (2015). All the above-mentioned studies are briefly described below.

1:100 Year Storm Event-Water
Surface Elevation (mams) Location 1 Location 2 Location 3

Report

ARCUS GBB
Ninham Shand ${ }^{2}$
2.2.4 Giermek (2015)

As part of a Master Degree research project Giermek (2015) undertook an investigation of the benefts of the attenuation provided by the Vaikenberg wettands immediately upstream of the River Club sile.
The study found that the wetland (+-2 hectares) was most effactive at attenuating rainfall evevis with "sudden spikes in peak fow, where a 42 per cent reduction of paeak flow was observed. For a scenario with tower flow rates yet a profonged peak flow rate, the welland was less effective, with a 20 per cent reduction observed." It is important to note that the model for this study was not caliorated and only
considered three rainfal events, all in 2013 .
2.2.5 Fisher-Jeffes (2015)

Fisher-Jeffes (2015) undertook an investigation of the viability of rainwater and stormwater harvesting exclusively on the Liesbeek River Catchment and did not considider the effect of the graater Sall River catchment on the River Club Site. While the study indicates thal stormwater harvesting (SWH) throughout the catchment (in a decentrallsed manner) may have the potentiti to significantly attenuate
peak flows and flooding in the catchment, this does not necessarily equate to the same e experienced if stormwater harvesting a altenuation were to take place on the River club Site. The study only assessed storms with recurrence intervals of less than 1 in 20 years. Furthermore, the study noted that a decentralised approach to attenuating stormwater would not te practical (to refort he the calchment
at this point) as, apart from the onen space at the River Club (which would require a centralised at this point) as, apart from the open space at the River Club (which would require a centralised
approach) it was shown that the majority of the remaining open space is either not siluated in areas
 as school sports fields. Thus, the study recommended SWH be considered at the plarning stage of any
future setilement.

2.2.6 AED (2016)

LLPT appointed African Environmental Development (AED) to underake a flood line determinallon
 to review the AED study. The review indicated the following:

- The results of AED's hydrological analyses were significanlly more conservative than any of tha other studies with the $1: 100$-year storm event having a peak flow of $336 \mathrm{~m}^{3 / 5}$. The other studies indicated
a $1: 100$-year peak flow of approximately $250 \mathrm{~m}^{3} / \mathrm{s}$. AED's peak flows for storm events are also higher than those of the olher studies. The difference in flow rates between the
AED study and other studies is a result of the methods used for runoff determination and routing of the runoff through the catciment.
- AED used an in-house developed spreadsheet based model for determining flood levels. The spreadsheet utbised seven triver channel / floodplatn cross-seclions and took account of bridge
backwater effects by increasing channel roughness coefficients at brdge locations. The spreadsheet
did not take tidal effects or sea level fise due to
 for all recurnence interval events.s. In the case of the $1: 100$-yeare event, the AED flood levels are
between 0.5 m and 1.0 m hgher than those of the other studies.
- The configuralion of AED's hydrological and hydraulic models made it difficult for AED to respond to quenies regiring the inpact of the proposed development on surrounding areas during lower order
flood events $\mathbf{t i}$.e. the annual. 2 yaar and 5 on flood levels at he Rinuer clicu silite could not be accurately assessed in the spreadsheet model. a AED identified, as did previous studies, a need to maintain the overland flow route through the PRASA
owned land.

2.4 Funve development scenariots
2.4.1 TRUP

The Two Rivers Urban Park (TRUP) Programme is an initialive resulting from a partnership between
the City and the Westem Cape Government (WCG). The intention is to enhanca the area's natural and
 manufacturing and recreationat activities, aimed at generating a wide range of housing, recreation, business and employment opportunities, with the aim of creating an 'open opportunity society for alt so
that people can live lives that they value.

Following extensive work undertaken primarily by NM\&A, a concept for future development of the TRUP was developed in order to make a preliminary assessment of the capacity of services in the area as
indicated in Figure 2-10. Allhough the TRUP development proposals are not yet available, this conceptual layout provid. Allhough the TRUP development proposals are not yel available, this conceptual layour provides a good indication of the potential spatial extent of TRUP. It should be noted
that the developable area (on the River Club site) according to the TRUP 'vision' is significantly less than that proposed by LLPT for the development of this site.

2.4.1.1 Comments on the concept design

Aurecon raised a few queries with regard to the existing concept design and the impact it may have on
the fload plain. These questions, and answers, included:
the fload plain. These questions, and answers, included:
Whether the proposed open space (No. 1 \& 2 in Figure 2-10) will go ahead as they overlay the existing
M5?

- Mammon (2017) noled that these areas are part of a long term landscape scenario to deck over
the M5. Mammon (2017) further noted that it is highly unlikely to be implemented in the short to medium term but potentially could be considered in the next $50+$ years. Mammen (2017) concluded
that "/t is an idea and not a reallstic proposal for vhere we are af as a govemment and cily." - Aurecon would agree it is unrealistic and therefore has not incorporated it into the modelling. Whether the developable land (No. 3 in Flgure 2-10) will be limited to the South West and not cross
the road as it currently does / the road will not be moved nearer to the river? - Mammon (2017) noted that the response here is similar to that above. - Aurecon allowed for this development, assuming the road could move Whether there is an intention to develop areas such as No. 4 in Figure 2-10?
- Aurecon allowed for this development, assuming the road could move - aven if it is unlikely - as
this would potenilally affect the floodplain.
- Mammen (2017) intertion to develop areas such as No. 4 in Figure 2-10

Mamman (2017) noted that the intention is to develop the Valkenberg Hospital Site in the long term
notwilhstanding the fact that this sitit has upgrade plans in place. The dark grey comer portion can
be considered for development in the medum term.
abrecon

The Passenger Rail Agency of South Africa (PRASA) currently intends to further delvelop its site to the
North of the 'Oid' Liesbeek River-Figure 2-11. Although significant additional development is proposed this is not expected to have any effect on the flooding of the Liesbeek/Salt Rivers. It is important to note That there is an overland flood route over the PRASA land, which might be blocked by the proposed
PRASA development and result in ponding. This would be the case regardless of any development on the River Club site.

AED (2016) and RH-DHV (2016) discussed the proposed closing by PRASA of the flood route. In this
What it is the intention regarding the development of the wo pleces of land labelled as No. 5 in Figure
$2-10$, as ciepending on how these are to be developed and linked to the surrounding areas, they could have a significant impact on the floodpiain?

- Mammon (2017) noted that these areas have been identified for the proposed docking feature associaled with an information contre and a small-scale restaurantcoffee shop. These areas are
dealt wilh comprehensively in the TRUP Speciallst Study: Watercourse Management \& Creating a dealt with comprehensively in the
Docking / Waterfront Feature.
2.4.1.2 Conclusions of the RH-DHV Report

The following comments are made with regard to the RH-DHV: Task 2 Final Report - Modelling of Flood
Miligatlon Options on the Salt River;
During January 2017 Aurecon had the opportunity to revlew and comment on the RH-DHV model. The comments made, and responses, are documented in Hirschowitz (2017). Importantly, the
subsequent adjustments had a slgnificant impact on the results of the analyses and as such it is worth noting the following:

- Not all the models were rerun.

Not all the suggested changes were made.

- Aurecon did not review the models prior to thelr finalisation.

The City views the RH-DHV study as a high-level planning study that sought to address the key
challenges and to identify options for possibly reducing / attenualing peak flows, White the study provided some insight into the potential flood levels, both the repori and the City recognised that more detalled studies - such as the current study described in Section 3-would be required to address
local / specific questions.

RH-DHV had a number of concerns relating to the use of PCSWMM2D and advised the Clly not to
use PCSWMM for any further 2D Hydraunic Modelling.

- It is Aurecon's view that PCSWMM2D provides a useful tool for assessing flooding in an urbanised area. Whier HEC-RAS may be better suited for modelling the river hydraulics, it is unable to model
the greater stormwater network, surcharging and runoff trapped at low pointe.
 generation
that PCSWMM2D performed relatively well in comparison with fully 2D models for other
cotche

PCSWMM2O has been utilised for 20 modelling in a range of catchments around the world.
On account of RH-DHV's concerns regarding PCSWMM22, the 'Status Quo' has been modelled both
with both PCSWMM2D and HEC-RAS 2D. The results are discussed In Section 4 .

2.4.2 PRASA

regard the following should be note

Figure 2-13 Existing NRF developmant proposal

Methods of Investigation
 to improve the data it is possible that all the errors were not identifled.

3.1.1 Hydrological parameters

It is important to note that the Clty's 'Floodplain and River Conidor Management Policy' (CSRM, 2000a)
 relationship between rainfall and runoff, including: the extent of rainfall in a calchment, antecedent sofl accordance with City's requirements, the 24-hour 1:100-year SA SCS Type 1 deslgn ralnfall and in
 recurrence intervais of between 4 in 2 years and 1 in 100 years.
As noted above, all the remaining catchment $/$ hydrologic parameters used in the SRK (2012) models
were adopled.

3.1.2 Mianning's roughness

The increased resolution of modelling of the hydraulic system (rivers and stormwater network) for the
 a site inspection; a review of relevant Itterature shown in Table 3-1; a review of SRK (2012); and a review of the roughness coefficients used in the RH-DHV (2017) study. It was decided to use a Manning's coefficient of 0.015 for all siormwater pipes. The Manning roughness coefficients used for channels and
for flood plains are shown in Figure 3-1.
The selection of Manning's Roughness coefficients was further checked against those advised by the
Kruger \& Gomes (2007).
2.5 Summary of Neterabracteview

- The River Club site is prone to flooding by events with a frequency of recurrence of about once in
every 2 to 5 years (however as noted above it was nol possible to undertake a statistical analysis
with the available data).
: There are a significant number of studies that incorporate the River Club slle.
- Some of these studias provide contradictory resulis.
- There are a wide range of stakethoiders.
There have been changes to the City's policies relating to developing within the floodplain ac There is concem that inflling of the River Club site will result in significant increases in flood levels. Some stakeholders have openily rejected any study that indicates a negllgible impact on flood
levels.
". There is a need for a detailed analysis of the potential for flooding in the vicinity of the River Club
site.

\& h

Figure 3-1 Manning's Roughness used for modelling
3.1.3 Digital Terrain Model (DTM)
To undertake 2D modelling - as required by the City - it was necessary to make use of an accurate
Digital Terrain Model (DTM). This DTM was generated as follows: Digital Terrain Model (DTM). This DTM was generated as follows:
a A 0.15 m DTM was created from the LiDAR ground points provid
- These LIDAR points did not represent the river bed profiles (as LIDAR does not penetrate the water
surface).
- RUf-DHV
- undertaken for the River Club and the original LDAR data indicated that the LIDAR levels were generally lower than the corresponding ground surveys. Therefore, the levels of all the LiDAR
points were raised by 0.25 m . RH-DHV (2017) further noted the
well."
a correclion in the order of 0.25 m was deemed necessary in other studies in the TRUP area as
well."
Aurecon requested a topographical dataset from the City which had already been corrected. As
this is the most recent topographical data, and appeared to best represent the site, it was used by
Aurecon for all modelling. Aurecon for all madelling.
The underwater profles of the river channets were generated as follows:
The 1D HEC-RAS Model created from a bathymetric survey undertaken as part of the RH-DHV
(2017) study was provided by the City.
ตumeeon
- RAS Mapper was used to interpolate and "export" 0.15 m DTMs of the various river channets. DTMs of the bridges were generated, based on the levels of the top of the railings (conservalive
assumption) surveyed for the RH-DHV (2017) study.
These lhree OTMs were then merged to create a single representative DTM as indicated in Figure
$3-2$.

PCSWMMIPCSWMM2D does not contain a "Bridge modeling toot. To ensure that the HEC_RAS model and the PCSWMM models could be compared, PCSWMM's toof for importing hydraulic structures
(e.g. bridges, culverts, weirs) from HEC-RAS was utillsed. PCSWMM automatically converts bridges / auo pue (pru ц,
 represented by an irregular cross-section (transect), and each opening below the bridge deck by a
custom cross section. The conversion from HEC-RAS to PCSWMM is illustrated in Figure 3-3.
aurecon
3.1.5 Boundary conditions
For both the PCSWMM2D and the HEC-RAS modelling the boundary conditions were as follows:
In The SRK (2012) hydrographs for the Black River and the Liesbeek Rivers were used as upstre
The SRK (2012) hydrographs for the Black River and the Llesbeek Rivers were used as upstream
boundary condilions.
Within the modellin
Within the modelling area, for the PCSWMM2D model only, the minor stormwater system was
modelled.
" The boundary conditions at the outer edges of the floodplain assumed normal flow depth.
an
The downstream boundary conditions for the Sall Rlver Canal at the coast are shown Table 3-2
The downstream boundary conditions for the Sall Rlver Canal at the coast are shown Table 3-2.
These conditions are based on the PRDWN (2010) estimates which in furn were based on the SA Navy
(2010). The peak tidal level was assumed to coincide with the peak flow in the Sil (2010). The peak tidal level was assumed to coincide with the peak flow in the Sall River which is a
very consenvative assumption as the tidal cycle is approximately 125 hours. PRDW (2010) also

events in the cafchment. This effect will further be complicated with varying local precipitation vithin
the catchment."

Figura s-s Importing of bridgos from HEC-RAS into PCSWMM
For the PCSWMM model, energy loss coefficients were determined for bridges to account for the contraction and expansion or the flows under bridges (which are modelled by HEC-RAS in accordance James et at. (2012) to be as follows:
*Entrance Loss Coefficients (ELC) equivalent to the contraction coefficient used in HEC-RAS, and
- Average Loss Coefficient (ALC) equivalent to the expansion coefficients used in HEC-RAS.
The coefficients ulilised for the SRK (2012) PCSWMM models were, typically, ELC 0.1, and ALC 0.3. -
3.1.6 Accounting for Intra year events

The cily has developed standard design storms and hydrological madels for 1 in 2 -year, 5 year 10 -

 modelling area, as well as the precipitation parameters for the 0.5 -year and 1 -year storm eventis.
 implies that avery year, without fall, an event of that magnilude or greater will take place. As was evident
in 2017 , it is possibte that such an event does not take place. However, for the puposes of this analysis

3.2 Development Layouts

The layouts for the proposed development have evolved through a number of lierations with the proposals increasingly gaining a focus towards transforming the Lesbeek River Canal into a more Raapenberg wellands and is seen as improving the overaral functioning of the ecological systems in the area. The changes have resulted in two primary development options:

Opllon 1 (Figure 3-4)-which envisions the transformallon of the Llesbeek canal and the partial filling
of the oidd Liesbeek River; and
Option 2 (Figure 3-5) - which leaves the Lesbeek canal and 'old' Llesbeek River largely untouched.
On account of the backwater effects of the downstream railway bridges - essentially causing a damming effect thal Impacts on the River Club sitie - the differences between Optlons 1 and 2 are inconsequential.
Therefore, this study has been based on the Option 1 layout which is also perceived to be the preferred

It should be noted that the proposed development is not explicity in accordance with the cilvs
It shoutd be noted that the proposed development is not explicity in accordance with the Chy's
'FFoodplain and River Coridor Management Policy' (CSRM, 2009) and would require the Cily to make exceplions for the following provisions:

Section 9.2: Flood Management and Public Saferty

- Permission to develop $/$ obstruct the free flow of water within the 20 -year flood line area would need

Section 10.5: Table 1: Framework for the assessment of Proposals

- The current assessment framework forbids development (ifcluding filling) within the 50 -year flood

As the proposed development falls under the 50 -year flood ine, a deviation from the pollicy,
allowing the developer to fill (considered development) would need to be granted
Notwithstanding the above, the City could approve the development based on the "geomorphoiogical,
maintenance, social and economtc aspects" (presented by other specialists), and on the findings of this
study.
aurecon

It is important to recognise that a 1 in 100 -year recurrence rainfall (which is assumed to cause the 1 in 100 -yeer flood) and a 1 in 100 -year tidal event do not necesssarily coincide. In principle, the probability year event. However, there is likely to be some relationship botween stom events at sea, and flood events on land - but not necessarily of equal magnitude and recurrence interval.

PRDW (2010) investigated the correlation of storm surge and rainfall events using 24 years of data at the South African Weather Service's Observalory ralnfall station. Thelt Investigation found that
-Preliminary results show fimited correlation of extreme rainfall and stom surge. The maximum ratnfall from the correlated data set (-90 mm representing a retum period between $1: 20$ and $1: 50$ years)
 a relatvely small reintall $(-30 \mathrm{~mm}$ for a retum period < $1: 10$)." a readvely smair raintall $\sim 30 \mathrm{~mm}$ for a retum period < $1: 10$).
PRDW (2010) concluded that "based on the level of uncerial

PRDW (2010) concluded that "Dased on the level of uncertainty of the response of the catchment
hyderograph to pracipitation events, spectically with respect to the time delay in peak fow, it is
recommended that the calculations for return period floods ars alccultated with the equivent retum recommended that the calculations for return period floods are calculated with the equivalent retum
periods for raintal (i.e. 1:100-year flood and $7: 100$-year rainfall and a lower retum period for stom surge for the sea interface (l.e. 1:70 year stom surge for example)."

As noted by PRDW (2010) the correatition between storm surge and rainfall is complicated due to a range of factors including timing, rainfall distribution across the Salt River Catchment and tidal cycla (Spring high or Spring low). Therefore, a simple analysis was undertaken using 10 years of rainfall data
at the Newiands rainfall station which provides an Indication of high rainfalls in the Liesbeek River at the Newatand rainfall station which provides an indication of high rainfalls in the Liesbeek River
Catchment as a result of the orographic effect caused by Table Mountain. This analysis indicated that approximately 30% of rainfall events occurred on a day when the peak sea level exceeded the Mean High-Water Spring (MHWS) tidal level. An analysis of the 10 largest rainfall events wilh precipitation of
between 90 mm and 130 mm (per day), roughly equivalent to $1-5$-year Recurrence Interval events, between 90 mm and 130 mm (per day), roughly equivalent to $1-5$-year Recurrence Interval events,
indicatad that 4 of the 10 events occurred when tidal levels exceeded the MHWS level. Based on the above findings, particularyy those of PRDW (2010), it is considered that the
Based on the above findings, partitulaty those of PRDW (2010), it is consitiered that the assumptions
used for the RH-DHV (2017) study are reasonabia and have been adopted for the analyses described
below.

Figure 3-5 Layout option 2, shawing the most algnificant differonech with Option 1

The city has, historically, preferred two models for hydraulic and hydrological modelling. The

 performing hydraulic calculations, and therefore that it is not purely a hydrological model. PCSWMM's
routing can therefore have an impact on the HEC-RAS outputs. More recenfly the City has preferred PCSWMM 2D for Its $2 D$ modelling. If should be noted that modelling hydraulic and hydrological systems is not an exact deterministic science - different models and modellers may obtain different results. This is further complicated by the selection of modelling approach. PCSWMMM 2D Modelling approach sometimes called 'quasi-2D - is equivalent to the 'diffuse wave solution' in that it does not incorporate
the full 2 D momentum equation. On the other hand, HEC-RAS uses the 'diffuse wave solution' - as opposed to the 'full momentum solution' - which runs faster and is more stable. While the full momentum solution is considered more accurate it does require calibration - as do all models - and HECRAS also
contains more parameters for which values are uncertain - especially when calibration is not possible. contains more parameters for which values are uncertain - especially when calibration is not possible. The variation in modelling results is evident in the recent 20 bench marking studies - based on the
original benchmarking study by Neelz \& Pender (2013)--where the results varied for a variaty of reasons original benchmarking study by Neelz \& Pender (2013)--where the results varied for a variaty of reasons
between the different models as shown in Figure $3-8$. 1 it is worth noting that when PCSWMM modelled the scenario the results (overlaid on top of the original study) appeared to be reasonable. HEC-RAS also modelled the same scenario and its results were also reasonable. There were differences between Essentially, a review of both the PCSWMM and the HEC-RAS models indicaled that both provide Essentially, a review of both the PCSWMM and the HEC-RAS models indicated that both provide

Figure 3-8 comparison of the 2D modellang rosults for a valley flooding scenario (Test 5 , Folnt 3) (Neetz \& Pander,

HECRAS
ans to mads in RH-OHV (2017) which questioned the use and appropriateness of PCSWMM. Both PCSWMM and HEC-RAS have their own strengths and weaknesses for modeling and therefore if was decided to undertake the additional HEC-RAS modelling as a confirmatory check - not to replace the PCSWMM

The 20 mesh for the HEC-RAS model was developed using QGIS and the 'RiverGIS' plugin. For the HECRAS mesh (Figure 3-7), the same break lines that were used for the PCSWMM model were used and supplemented by break lines aiong the centres and edges of the respective rivers. The addition of
the break lines representing the centres and edges of the respective rivers in the HEE-RAS model was he break lines representing the centres and edges of the respective rivers in the HEC-RAS model was
utilised due to the HEC-RAS model being a fully 20 model, and because of HEC-RAS's computalional utilised due to the HEC-RAS moder being a fully 20 model, and because or HEC-RAS's computalional
methods. It was also necessary to ensure that the edges of the river (sometimes elevated above the methods. It was also necessary to ensure that the edges of the river (sometimes
surrounding area) were clearly defined to prevent 'leakage' within the modelling.

HEC-RAS is currently unable to model bridges in the fully 2D modelling environment, and as noted in Neelz \& Pender (2013) there is a degree of uncertainty concerning the linking of 1 D channels and the
2 D flood plain. Therefore, it was decided to use HEC-RAS in a fully 2 D modelling environment frather 2D flood plain. Therefore, it was decided to use HEC-RAS in a fully 2 D modelling environment (rather
than the 1D-2D modelling environment) and to overcome the existing restriction with regard to modelling of the bridges within the 2 D environment, two approaches were followed:

Both approaches make use of open source software, and therefore once the 2D mesh was generated
it was imported into HEC-RAS where the Mesh was edited, finallsed and the relevant 2 D modelling parameters were generated.

Figure 3-9 Gomparison of the 2D modelling results for a vallay finoditg seenarfo (Test 5 , Point 3) (Erunnar, 2016)
both HEC-RAS and PCSWMM could be used, it is considered that because of the urban nature and
 was used to confirm that the PCSWMM results were reasonable.

$$
\text { \$, } 6 \text { Quaptifying the Fick ho the Rapenberg Wetande }
$$

Or Day - the appointed Fresh Water Ecologist - identified the need to quantify the risk of changes to the hydrological and hydraulic regime in the Raapenberg wetlands as a critical component of her study.
Initially, this was to be achieved by utilsing flow data collected by the City. Of the two gauging stations,
 It was determined that the data was nol reliable. This meant that any analysis undertaken by Dr Day would have a low leval of confidence, and so would not be of use in assessing the impact on the
Raapenberg Wetlands. It was therefore decided that it would be necessary to approach this aspect of the surface water sludy differently. This was done by surveying the Raapenberg wetlands, and using
 The water level in the Raapenberg wellands is approximately 250 mm lawer than that in the
surrounding Rivers. in There is evidence of wetland vegetation that grows in brackish water.
There was an informal intervention shown in Figure 3-12 which was to excavate with the intention of
increasing / allowing flows into the welland. This intervention was performed by a "Friends of the
 There is an artificial channel thal seems to have been created along the boundary of the SAAO
property. This is not linked to the Liesbeek or Black River Systems

Fgure 3-12 intervantion that encourngas flows into the watlands
The findings of the site visit suggested:

Considering that this catchment has limited functional and reliable flow or depth gauges, it is not reasonable to expect a very complex model (i.e. full momentum 20 model) to be of much additional
value as there is too much uncertainty - especially concerning the modelling of bridges.
3.5.2 Advantages and disadvantages of the different models Both HEC-RAS and PCSWMM provide reasonable results. Each model has ths own HEC-RAS is generally better for modelling large river systems:
HEC-RAS is generally belter for modelling large river systems:

- HEC-RAS 10 is belter at modelling bridges and inline stucture
HEC-RAS 10 is belter at modelling bridges and inline structure
- HEC-RAS 10 provides a more accurate Energy Grade Line (see Section 3.7)
HEC-RAS 2D is currently nol capable of modelling bridges and inslead assumptions - much as for
SWMM - need to be made.
HEC-RAS 2D can implement the full momentum $2 D$ modelling equations, but without calibration PCSWMM is generally better for modelling in urban areas:
- Modets the slormwater system - both major and minor - which allows it to highlight potentiat
trapped low points and back flooding through the stormwater system
Does not discreetely model bridges, but approaches have been developed and tested that account
for the energy losses at the bridges in the SWMM model (e.g. James el al., 2012).
- SWMMM 2D-a 'quas' $2 D$ model - allows for the incorporation of the minor stormwater system with
While the Black River is a 'large river for Cape Town, it is not particulary large when compared to other fivers in South Africa and across the world. The surrounding urban areas are relatively low lying and
thus being able to incorporate the minor stormwater systems in the modelling is important and useful as there is evidence that some of the llooding is due to the minor systems surcharging. Therofore, while

aurecon

An increase in the recurrence interval of flooding would have a negative effect on the functioning of
the wetland. Therefore, the pre- and post (proposed) development scenarios were modelled to the wetland. Therefore, the pre- and post (propo
determine when the wetland would fill with water.
:7 The increase in volume flowing into the wetland would have a negative impact on the functioning of the wetland as the wetland is not primarily a freshwater system, and because increased water depths
would result in a change in the distribution of different plant species (Flow into the welland cannot drain out due to the differential in the water levels in the wetiand and in the nearby rivers). As such the pre- and post (propo
would fill with water.

In 2004 Ninham Shand undertook a study on behalf of City which investigated the possible widening of the Salt River Canal. This emanated from a review of a 1957 Councll proposal for flood rellef which the widening of the Sall River Canal from the original current width of 46 m to 61 m (an increase of 15 m). In 1974, the City's Executive Committee approved a recommendation by the Utilties and Works Committee that the Salt River Cana! (canal downstream of the Rallway Bridges) be widened (by 15 m) and that land adjacant to the canal, that was required to effect the widening, be acquired by the Cliy.
To date, some of the required land is stitit not owned by the City and the widening of the canal has not been implemented.

In the 2004 Ninham Shand sludy, and in line with the 1974 scheme approved by the Executive Committee, all existing road and rail bridges over the Sall River Canal were evaluated in terms of The resufts indicated some significant changes in the elevation of the flood line. When these elevations are plotted on the latest DTM, the benefits of this scheme are only realised in the vicinity of the PRASA
site - Figure $3-13$. It is important to note that the Ninham Shand report of 2004 was produced prior to site - Figure $3-13$. It is important to note that me Noption of climate change and sea level rise factors.

The TRUP study (RH-DHV, 2017) also considered widening of the Salt River Canal. The study examined the potential benefit of widening the canal by modelling an additional 25 m wide rectangular canal in paralle with the Black River channel and the exising Salt River Canal, together with widening of the brides crossings. If is uncertain why 2 mm was selected, and if is unfikely that it would be possible to 15 m originally proposed. RH-DHV found that immediately downstream of the N 2 ,
widen there would be a predicted reduction of 0.83 m in the water level due to the 15 m widening. The RH-
The City, none the less requested that this study also consider the possible effect of widening the canal and removing any restrictions (e.g. bridges). The following assumptions were made:
The bridges could be engineered $/$ re-angineared to not affect the flow in the Sall River-l.e. span
The canal was assumed to be a 61 m rectangular cross-section - with the same invert levels as the
existing canal.
Such a scenario would represent the 'absolute best case' scenario and is, in Aurecon's view, unlikely to
ever be realised. The Clity, however requested, that no option / possibility should be excluded.
It was noted that the survay showed that sediment had buit unat Sall River Canal outfall into the It was noten. A review of historic Images - on Google Earth - indicated that since 2000 there was only one year (Figure 3-14) in which the canal was clear - i.e. no sediment bulld up - meaning it had 100% of its
capacity. Aurecon believes that during any significant flood this sediment would erode effectively leaving the canal with its futl capacity. This may not happen for smaller floods. Therefore, all recurrence intervals were modelled assuming the sediment would not erode (worst case scenario), except the 100 -year
event which was modelled fwice assuming that the sediment would/would not erode.

3.9 Closing the 'pRASA' owarland oscape
As highlighted in Section 2.2, all the previous studies have identifiad a major storm event flood route across the PRASA sile. There has been concem about what would happen if this flood route were to be
closed. While doing so would be illegal and counter to the City's pollcies, the Clty nonelheless requested closed. While doing so would be illegal and counter to the City's policies, the City nonetheless requested

Figure 3-15 Flood Hisard Zones
Furthermore, the Cily's 'Floodplain and River Corridor Management Policy' (CSRM, 2009a) notes that: subject to stringent evaluation and control in the interests of publlc safety. In particular, obstruction to the free tlow of water within the 20 -year flood line area shall not be permitted. However, between the 50
and 100 -year Hood lines, some developments or activitles may be permitted, subject to such conditions as the clty may in its discration impose, while developments with particular evacuation or emergency response issues and high nisk developments will only be permitted above the 100 -year flood line"

In order to ensure that any queries relating to the accuracy / reliabilily of the City's hydrologic models
for the greater Sal River catchment could be quantified, a sensitivity analysis was undertaken by modelling a storm with a 1 in 200 -year Recurrence interval using the same approach as discussed in
Section 3.1 .6 for the scallng of intra-year events.
For the purposes of this report the twelve key 'monitoring points' indicated in Figure 4-1 were selected for comparison purposes throughout Section 4 in this report. These points were selected to represent areas where any impacts of the proposed developments are most likely to be realised / be of concern.
If necessary, the models can be used for comparisons at any point within the modeling area.
 Figure 4.9 'Montioring points' used for comparison betweon the different sconario's
The PCSWMM models performed well, as all the models had 'rouling continuity' and sunoff continuity'
4. Accuraty of the models
A comparison of the PCSWMM and HEC-RAS models showed the following:
The HEC-RAS (Diffuston Wave model with the bridges modelled as 1D gates) and the PCSWMM be very good, especially considering the differences in ways that each of these programs models the
tilow.
When HEC-RAS (Full Momentum equation with the bridges modetled as 10 gates) was used there
appeared to be an increase in the backwater effect of the bridges immediately downstream of the River Club site. This appears to be as a resuit of a combination of adding the momentum component of the $2 D$ equation and the manner in which the bridges were modelled (1D) within the 2D mesh. The
results were compared with the results of previous modeis (especially Ninham Shand, 2004) and it seemed that the use of the full momentum equation with 10 elements within the 20 mesh (Bridges)
resulted in some modeling instability.
"For both models the comparative increases in water levels between pre- and post-development
were effeclively the same.
aurecon

When modelling the lower recurrence intervals it was possible to model the Bridges in $2 D$ (by adding
the piers into the model). For this scenario the results of the PCSWMM model and the HEC-RAS model were again within less than 0.1 m . Unfortunately, as a result of the bridges all acting as controls,
and the water leveis polentially overtopping the bridges it was not possible to analyse the 1 in 100 -

All models have their limitations, however (with reference to Section 3.5) Aurecon is of the opinion that the models used for this investigation balance the complexity, uncertainties and data avallability.
 developments.

It is important to note that configuring the models was bssed on engineering judgement, and experience callibrate the models.

4.2 Imosact of the proposed development on flooding in the

This section of the report presents and dlscusses the results of the modelling undertaken in order to
determine the potential impacts that the proposed development might have or the adjacent propertles.

4.2.1 Runoff from the site

The runoff from the site would have no impact on the flood level for a number of reasons:
The conceptual design envisages a system of swales to attenuate and treat the flow - in
accordance with the City's 'Management of uman stormwater impacts policy (CSRM, 2009b); and For larger storm events (e.g. 1 in to0-year recurrence interval flood events) the peak runoff from the
site would occur approximately 1 to 3 hours before the peak flow in the adjacent rivers, and
herefore the site's local runoff has an insignificant impact on the flows in the adjacent nivers
 әч! u!

 1 in 20-year recurrence interval event local flooding in the highlighted area is a resull of the stormwater
system surcharging and resulling in overland flow. As evident in Appendix B there is an increase in the

As evident in Appendix B there is an increase in the extent of flooding extent of the Valkenberg wetiand
and the sports fields. It is Aurecon's view that the che computational and design of the model. As noted throughout this document the increase in water surface elevation that has been modelled is insignificant. It is more likely that during a storm event these areas
will be inundated in any case.

[^19]

[^20]

Figure 1-6 Maximum extent of inundation for the t00-year flood (Vicinty of River Club;
4.2.5 Changes in flow

The flows were assessed at the seven locations shown in Figure 4-7, and Table 4-3 provide a high-level overview of changes in the flow characteristics as a resull of the proposed developments. Table 4-3 indicates the changes in the characteristics of the 1 in 100-year flood that would occur at various locations on account of the proposed developments. The main increases in flows would occur
at the Salt Left and at the Black@River_Club. Those increases are also evident from the hydrographs at the Salt Left and at the Black@River_Club. These increases are also evident from the hydrographs
shown in Figure $4-8$. The total volume of the flood at the Sait Left would increase by 4% as a recull of
 the aerial extent of filoocing, as if would have litte impact on the depth of fioading as discussed in Section
4.2.3. The additional flooding would also have litto impact on the extent of the high hazard zon 4.2.3. The additional flooding would also have litto impact on the extent of the high hazard zone further
downstream as discussed in Section 4.2.6. As the food peak would occur downstream as discussed in Section 4.2.6. As the food peak would occur marginally eartier as indicated
in Figure 4-8 - which equates to a few minutes earller rather than hours earlier and is thus of little significance.

The flow at Black@River_Club shows a significant, 24% increase in the peak flow that would occur for a couple hours. This increase in peak flow would occur because the proposed River Club development
would effectively block the existing flow route that would have connected to the 'Old' Liesbeek River. This would force ath the flow down the Liesbeek Canai route. Thls increased flow results in the slightly greater increases in flood levels in the vicinity of SAAO (Section 4.2.3). The effect though is locallsed
along the course of the Llesbeek Canal (alongside the River Club site as is evidenced by the flow along the course of the Llesbeek Canal (alongside the River Club site as is evidenced by the flow
characteristics upstream (Black_River and Lesbeek) and downstream (SaitoRailway) in Table 4 -3 and Figure $4-8$. Figure $4-8$ clearly demonstrates that the flow, and timing of the peak, under the raliway
bridges inmediately downstream (Salt@Raliway) is largely unaffected. As such, the effect is lacalised, o k

The results which are summarised in Figure $4-14$ indicate that widening the channel and removing the 0.8 m . Interestingly this would havel reduce the maximum water surface level by between 0.1 m and 0.8 m . Interestingly this would have little impact on the extent of inundation, except as follows:
The sports fields would not be inundated as the 'old' Liesbeek would not over top, although the fields
would be tower than the water level in the canal and thus would be considered to floodplain; and . The PRASA land, also because the 'old' Liesbeek would not overtop.
There are some other minor differences between the status quo and the post-development scenarios with the Salt River Widened. These are most marked near the existing entrance to the River Club site
about 0.35 m . This effect is localised. For both scenarios with the widened Sal River channel, the extent of flood inundation would be reduced - but not significantly. Widening of the canal would potentially have a negative
Wetland due to the lower water levels which would result in the wetland being flooded less frequently.
Therefore, unless the value of development on the PRASA site Therefore, unless the value of development on the PRASA site were significant or critical as part of longterm city/town planning and the City were to undertake further modeling of the design of any widened
channel, ti s unlikely that widening the Sat River would be an economic or practical solution to flooding In the Salt River Catchment - whether the River Club development goes ahead or not

Figure 4-14 Impact of whitening the Salt River on the extent of inundation of the 100-year flood
the City's interest to undertake further modelling to assess how climate change and sea level rise impacts could be mitigated. Another reason for the limited differences, regardless of the tidal levels, is that a significant portion of the flooding is as a result of the Sall River exceeding its capacity. However, as discussed in
Section 4.2.10, even if the Salt River Canal were to be widened, the benefit would be relatively minor

Effectively this study indicated that due to the projected sea level rise, resulting from climate change, there would be flooding in the lower parts of the catchment - regardless of whether the development
went ahead or not, and that the development is unlikely to have any effect on the extent of flooding.

4.2.10 Impact of widening the Salt River Canal

The City requested that this study should also consider the possible effect of widening the Salt River
Canal and removing any restrictions (egg. bridges). As discussed in Section 3.7 the modelling of this scenario would represent the 'absolute best case'. As Aurecon's view, such improvements are unlikely to ever be realised for a number of reasons, including both practical and economic considerations. The modeling considered the 1 in 100 -year storm event and the following scenarios:
Existing status quo (existing channel and development) - SQ;
The status quo (existing development) with a widened channel (Section 3.7)- SQW; and
The proposed River Club development together with the proposed TRUP, PRASA and NRF
developments and a widened channel - PDTW.

4.2.11 Sensitivity analysis
The sensitivity analysis, discussed in Saction 3.12, indicated that aithough the proposed River Club and other develapments would cause small increases in flood levels (as expected due ta the increases in
flow), the maximum differences between pre- and post-devalapment flood flow), the maximum differences between pre- and post-develapment flood levels would only be about
$0.01 \mathrm{~m}(10 \mathrm{~cm})$. Even If future models indicate increased or decreased flows in the Black and Liesbeek Rivers, it is likely that these would show similar differences in the pre-and post-development flood levels.

4.2.12 Summary of the analysis It is evident that the modelling results show that "no matter what" is done, the impact is "insignificant". The development of the River Club, along with the TRUP, PRASA and NRF sittes is likely to have an tocation. With the graatest differences expected in the vicinity of the SAAO. recurrence interval and The inslgnificant changes in the extent of inundation whether the River Club proposal is taken forward
in isolation or in combination with the TRUP. PRASA and NRF proposals; The insignificant changes in the extent of inundation when the PRASA
Tlosed; on the functioning of the Raapenberg Weflands; and
aurecon Ath

post development scenarios (River Club Including/Excluding TRUP PRASA, NRF) the modelled water
surface elevation would be 3.6 mamsl and 3.7 mamsl surface elevation would be 3.6 mamsl and 3.7 mamsl.
As mentioned throughout this report, the modelled results should be carefully considered, especially
considering smail differences in water levels of less than 0.1 m . However, for the post development scenario Bulding 1 (not identifled as having heritage value) would be flooded slightly more frequently and its lioor is likely to be damaged by the 1 in 2 -year flood and by all larger flood events. Therefore, for
the post development scenario the frequency of damage may be increased. Quantifying the differences in damage is not possible - except to indicate that this would be marginal.

the buildings if the berm falled. The berm would probably not have any significant impact on flooding
elsewhere.

4.4 Impact of the proposed devalopment on flooding in the

 surrounding ecasystemsIn Section 3 it was mentioned that estimating the rainfall for a storm with a recurrence interval of less than about 1 in 2 years is stalistically problemalic. Based on the modelling undertaken as part of this
study - both in PCSWMM and HEC-RAS modelling - it would appear that the wellends study - both in PCSWMM and HEC-RAS modelling - it would appear that the wetlands would receive as indicated in Figure 4-19. This would equate to the wetland flilling in a storm with a recurrence interval of between $1 /$-year and 1 -year. Once water enters the welland, and the wetland is filled to +-2.5 mamsi the wetland becomes part of the flood plain area offering limited offine storage. The welland does not appear to drain below a level of +-2.5 mamsl the level at which flow enters the wettand). This would
equate to approximately 1 m of standing water at the deepest points in the welland. It seems that this water evaporates over time. Evaporation al Observatory is estimated to be approximately $1.5 \mathrm{~m} / \mathrm{arnum}$,
and rainfall about $0.6 \mathrm{~m} / a n n u m$. This would suggest that over a typical / average year the water levels and rainfall about 0.6 m/annum. This would suggest that over a typical / average year the water levels would flucluate in the wetland. If there were successive droughts - as $\ln 2015,2018,2017$ - it is possible
that the wetland could dry out should there not be a storm of sufficient magnitude to result in floading into the wettand.

Figure 4-19 Overvew of how flow enters and then loavas the Raapentorg wettand
The intervention undertaken by the Friends of the Liesbeek, TRUPA and SAAO which is shown in Figure mamsi. While Dr Day (Freshwater Consultant) will address the potential impacts of the increased requency of inundallion on the ecology, the intervention effectively has the impact of adjusiling the level to which the wetlands would drain after flooding to about 2.25 mamst (instead of about 2.5 mamsi). Thls would equate to a reduction of about 60 days before of about $4 \mathrm{~mm} /$ day, the reduced water level evaporated away. This could be compensated by more frequent flooding, but it is Aurecon's wetlands performance as it could decrease the salt levels in the wettand. An interesting observation on sile which is confirmed by the survey, is that

And Liesbeek Rivers are higher than the water level in the wetiand by approxter levels in the Black Figure 4-20. This indicates that the wetlands are not, typically, filled with water from the surrounding rivers - although the hydraulic gradient would indicate a flow direction into the wetlands. In fact, It would
appear that the hydraulic conductivity of the soll I peat that makes up the wetland is equal to or lower

aurecon

than the evaporation rate. The part of the wetland South of the footpath extending from Observatory has a higher surface water level that the primary wefland that borders the SAAO.

Flgure 4.20 Survayed water tevals in, and surrounding the Raapenberg wetlands
While not explicilly tested, the attenuation benefils of the wettand are cleariy ilmited. Prior to canalisation of the rivers, the wetlands would have been far more extensive and offered significantly more attenuation capacily - unfortunately this situation is not reversible.

An interesting outcome of the analysis is that the current post development scenario would suggest that
the water level would drop - albeit by 0.03 m - for the 1 -year storm ayent. Therefore it is possibte that the water level would drop - albeit by 0.03 m -for the 1 -year storm event. Therefore, It is possibte that
the proposed wider channel would offer some attenuation benefits over the existing situation for this event although this is within the margin of error and relatively insignificant. For larger storm events
(greater than 1 -year recurrence interval) there would be no attenuation benefit.

Effectively, the anatysis indlcates little to no significant change in the performance of the welland, as long as the recent intervention is reversed.

4. 5 Opportunity cost of not using the Wiver Cub hor

In order to assess the opportunity cost of developing the site - instead of using it for attenuation - the City agreed previous studies could be referred to. The results of each of these is reviewed below and
the implications summarised thereafter.

4.5.1 Ninham Shand (2004)

Ninham Shand (2004) Investigated the idea of creating a attenualtion pond by excavating high ground Black River Parkway to provide addititonal flood attenuation in ihis aree. Ther ciub) and along the side or 1:50 and 1:100-year flood volumes were simply too large for a pond in this area to have any attenualing effect on the downstream llow rates. It was also evident that, to be effective, slgnificant throttling of the river flow would be required at the confuence of the Black and Llesbeek Rivers rather than fust provision flood levels in the vlinity of the River Club as well as screreases in flood levels further upstream alise ing the Liesbeek and Black Rivers. As a result, the idea of a retention pond was abandoned. She Liesbeek and Black Rlvers. As a result, the idea of a retention pond was abandoned.

Subsequent to this study the Cily incorporated Climate Change and Sea Level rise into their modelling.
These changes are Ikely to further reduce eny benefils offered by an attenuation system.

Fisher-Jeffes (2015) undertook a PhD study to assass the vability af minwater and stor
harvesting in South Arrica. The study made use of the Liesbeek River Catchment as a case study to test the viabilly of rainwater and stormwater harvesting.

Fisher-Jeffos (2015) alss indicated, as did Ninham Shand (2004), that providing attenualion in the region attenuation. Fisher-Jeffes (2015) however only looked at records of events heftit in the form of flood antenuaion. Fisher-Jeffes (2015) however only looked at records of events between 2003 and 2012 -
due to the lack of data before that period. The largest recurrence interval event during lits period was

Fisher-Jeffes (2015) study was focused on ulilusing the Liesbeek River Catchment as a typical"
catchment and did not model the greater Salt River Catchment as was done in Ninhtam Shand (2004).
catchment and did not model the greater Salt River Catchment as was done in Ninham Shand (2004).

4.5.3 RH-DHV (2017)

As part of the RH_ DHV study two altematives were considered for the Rlver club Island: elther flood cormbination with storage at the Rondebosch and King David Mowbray golf courses or other constered in
che measures, as on its own it would not have a significant effect on flooding wilthin TRUP The effect of the combined flood storage above would have to be evaluatied using a hyydraulic model extending further upstream, with additional surveys of the upstroam Black River cross-sections.

4.5.4 Conclusions

Based on a review of the above studies, it was apparent that the potential benents of using the sithe for
flood attenuation purposes would be neggigible. It was also evident that the construction of an attenualion
aurecon
laclity would require the City to invest significant resourcess in design, operation and maintenance with would likely be more appropriate to implement the original long-term plan of widening the channel However, were the clty to consider the potential for utilising the stite to attenuate stom events, it would
need to consider the following:

The slle would need to be excavaled to provide addillonal storage.
Additlonal storage / atteruation capachly would probably also have to be provided at the Rondebosch
and King David Mowbray Golf Courses.
The City would have to have the resources, to actlvely manage the site as either a Real-Time Control
attenuation facilly or a Stormwater Hervesto attenuation facilly or a Stormwater Hervesting facilly.

The Owners of the River Club would need to be willing to soll therl land, which would Ikely be at a
high price and from which the City would not receive the financial benefits of the property
Consididing the above, it is unlikely, that the River Club sile will be developed as an attenuation facilily.
Based on the avallable literature the benefils are unlikely to be significant - in terms of reduced flood
damage.

Conclusions
This study has reviewed seven relevant studies, and undertaken extensive modelling with both HEC RAS and PCSWMM 2D. The site is extremely complicated, and it is necessary to consider all the eparate findings together before drawing any definitive conclusions. Considering any 'question' or
ssue' ralsed in isolation may lead to a misinterpretation of the results. Furthermore, hydrology and issue' ralsed in isolation may lead to a misinterpretation of the results. Furthermore, hydrology and ase sunses ath 6uןə important. As such the findings based on the complete analysis are presented and interpreted using
Aurecon's knowiedge of the site. For these reasons, Aurecon involved three of its staff who have Aurecon's knowledge of the site. For these reasons, Aurecon involved three of its staff who have
extensive experience of this site in order to ensure the analyses were undertaken and interpreted in the most appropriate manner.
Therefore, based on a review of all the available studies, the extensive modelling, and engineering
The results (magnitude of impact) appear to be relatively consistent for each study, even where study
The results (magnitude of impaci) appear to
methods and elevations may differ slightly.
-The development of the River Club as well as the TRUP. PRASA and NRF sites is likely to have an
impact on flood tevels in ine order of between 0.01 m and 0.15 m depending on the storm recurrence interval and the evocation The greatest diffirencences between lime resulls are in the vicinity of the SAAO. interam endis of these differences are insignificant.
Tif the River Club is developed in isolation (i.e. TRUP
as If the River Club is developed in isolation (i.e. TRUP, NRF, PRASA were not developed), the impacts
 incertainties of the modeling tools.

- H is important to note that if the TRUP, NRF, PRASA were to be developed in isolation, then the
results must not be interpreted to mean that they would only have an impact equal to the difference
(typically $+-0.00 \mathrm{~m}-0.0 \mathrm{~m}$) between the post development scenarios including River Club, TRUP.
 ind the vicinity of the River Club slle.
 of the welland during smailer recurrence interval events. The current proposals would have ithe
no effect, but further detailed design refinements - during detalled design - should be reanalysed.
 increase flows into the welland.
= The site is unlikely to be developed by the city as an altenuation faclity.
PRASA should not be allowed to close the existing overiand flood route that extends across its
property, as it is important for
Club development proceeds.
The extension to Berkloy Road should be designed in such a manner as to not impact on the water leveis delermined by this study and any changes to the preilminary design would need to be re-
eveluated. The datalied design of the extension of Berkiey Road shouldic consider ralising the portion of the road that is wilhin the floodplain.
There is a need to address the localised change in nisk along Liesbeek Pariway. This could be done
through raising the road locally (as discussed in the report) to eliminate the potertial tlooding by the
Section 4 provides a detailed discussion of the potential hydrological and hydraulic impacts of the proposed development. This discussion is summarised in Section 6 . The assessmen ofthatite without
completed as shown in Table $5-1$. The impact for the proposed development (any alternativ) without completed as shown in Table $5-1$. The impact for the proposed development (any allernative) without
mitigation is assessed to be insignificant, and with the proposed mitigation the inpact is assessed to be tow (+ve) significance, This Impact is manageable to a limited extent, but once the sitt is develop will not be reversible.

1 in 100 year event, however pending due to local stormwater is also likely to occur at this location
for which the provision of warning signs would probably suffice.
The impact of the proposed development on flood levels and their extent are considered to be
negligible.
The impacts of the proposed River Club development and of the proposed Two Rivers Urban Park
development on flood levels and their extent are considered ta be negligible.
Widening the Salt River Canal would reduce the flood levels for all scenarios, but that this would come
at a significant cost with very filth benefit and is unlikely to be in the foreseeable future. The main conclusion of this study is that the proposed development would have an insignificant effect on flooding in the vicinity of the existing River Club site. Although the development would have some limited and localised effects on the flows and water levels in the Liesbeek and Black Rivers, the modelled
impacts in terms of increased hazard and damage to properties are insignificant and can be considered negligible - as long as the above findings are appropriately dealt with.

Although the proposed development might not appear to have a significant impact on flooding, it would
none the less require the following deviations in terms of the City's 'Floodplain and River Corridor Management Policy' (CSRM, 2009a):
(her within the 20-vear flood line area would need
Section 9.2: Flood Management and Public Safely

- Permission to develop / obstruct the free flow of wa te
to be granted.

4. Section 10.5: Table 1: Framework for the assessment of Proposals plain. It notes: "In exceptional circumstances minor "smoothing" of the $50 / 100$-year flood inge may development precinct".

As the proposed development falls under the 50 -year flood line, a deviation from the policy,
allowing the developer to fill (considered development) would need to be granted. With regard to the two development layouts (Section 3.2), both would have simitar impacts, although Layout Option 1 (focus of this study) would appear to be the preferable option as it aligns with the vision
of the City's 'Floodplain and Rhee Corridor Management Policy' (CSRM, 2009a) in that, In comparison of the City's 'Floodplain and Rhee Comblor Management Policy' (CSRM, 2009a) in that, in comparison
to Layout 2) it provides an improved ecological corridor, provides the potential for improved amenity and biodiversity in line with the principles of Water Sensitive Urban Design (WSUD) principles.

It is recommended that the city should take account of the findings of this study to determine whether in terms of the policy and based on consideration of the "geomorphological, maintenance, social and
economic aspects" (presented by other specialists) the proposed development of the River Club Site should be approved.
Knuger, E. \& Gomes, N. eds. 2007. Dralnage Manuel. Pretoria: South Affican National Roads Agency
Limiled.
 Lurie, L. 1954. Theory of Flow For the Liesbeek River Under FLood Condtions.
Marsalek, J., Karamouz, M., Goldenfum, J. \& Chocat, B. 2006. Urban water cycle processes and
interactions. International Hydrological Programme (IHP) of the United Nations Educational, Neelz, S. \& Pender, G. 2013. Benchmarking the latest generation of 2D hydraulic modeling packages. Ninham Shand. 2004. Salt River Catchment: Quantifcation of Flood Risk and Evaluation of Ninham Shand. 2003. Salt River floodlline and danger line determination.
PRDW. 2010. Marine inputs to Sall Rivar Flood Model. 94
RH-DHV. 2017. Two Rivers Urran Park Specialist Study: Modelling or Flood Mitigation Options on Rossman, L. 2008. Storm Water Management Model user's manual, version 5.0. Uniled States of America: National Risk Management Research Laboratony, Office of Research and
Develoment, 1 . I . Environmental Potection

 SRK. 2012. Stormwater Infrastructure Asset Management Plan (Phase 2A) Ralnfall Analysls and

 Modefinge Practice Handioook. Dutch Dept. of Public Works, Instiule or inland Water
Management and Waste Water Treatment. Whittemore, C \& $\&$ Gorgens. A. .2007. Leterer to Mr T Dickinson: Optlons for reducing food risk.
 and U/ban Drainage Systems. WA Publishing. h.

Recurrence interval (Description)	Development Scenario				
	Status Quo	Post-development	Post-development (Rlver		
0.5.-year			Club, TRUP, NPF, PRASA.		
1-year	284	2.49	2.49		
2-vear	$3.2{ }^{2}$.	2.85	2.85		
5 syear	3.58	3.24	3.24		
10-vear	3.83	3.61	3.62		
20 year	4.11	4.14	${ }^{3.888}$		
50.year	4.44		4.16		
100-vear	4.54	4.68	4.51		
200 year	4.81		4.818		
100-year (widened Channei) 100-year PRASA overlond	3.58		$\begin{aligned} & 4.88 \\ & 3.49 \end{aligned}$		
	4.67	Not modelled	4.75		
100-year (Opened Salt River mouth)					
	4.64		4.71		
Hecurrence Siterval (Dessription) Development Scenario					
	Status Quo	post-development (RAlver Cluh only)	Post-development (River Club, TRUP, NRE, PRASA		
0.5 year					
1-year …….....- - - - - -					
${ }_{2}^{2-\text {-year.- }}$	No water on the surface				
10 -year					
20.year --..-- - - .					
50-vear --.....-......... 4.49					
100-year 200 -year -		${ }_{4}^{4.75}{ }^{-}$	Developed as part of TRUP Proposal		
100 -vear (Widened Channel) \quad.. $\left\|\begin{array}{l}\text { No water on } \\ \text { the surface }\end{array}\right\|$					
100-year (PRASAA overland route cliosed)	4.71 Not modelled	Not modelled			
100.year (Opened Salt River mouth)'	4.69	!			

Table A7 Water Surface Elevations (mamsi) at Point 7 (Natural Ground Lovel 0 - 0.23 mams)

curecon

Gurecons

Eurecon

Figure B4 Companion of 5 -yow flow inundation extent, (Status Quo Vs Post Development with River Cub, TRUP, NRE, and PRESA)

curecon

aurecone

Flgum B7 Comparison of 50 -ybar flood Inamation extanta (Sutus Quo Vs Post Developmont with River Clut, TRUP, MFF, and FRASA)
amecon

From:	Letitia Ohlson-Isaacs
To:	Tim Florence; "geoffoplanpartco,za"
Bcc:	"abicase@omail.com"; "amee@unicorncafe.co.za"; "davson@mweb, co.za"; "venteralex@gmail.com";
	"alexdmueller@omail.com"; "alexroedgegrowth com"; "alison paulinomail.com";
	"amienadjvids momall com"; "endrea, couvertocmail com"; "asbowden(ogmail com";
	"anielabb@amail.com"; "annakaiam@omal.com"; "annalisa,za@omail.com";
	"foreenwood@oldmutual.com"; "Ariane.delannoy@omall.com"; "amie. Fkicogmail.com";
	"auke@osvchohistorian.org"; "auke@cfah,org.za"; "rodriques.belisa@omail.com"; "bdivev@gmail.com";
	"caitin, sole@alumniuct,ac.za"; "cebarnes@omail.com"; "carinezaayman@icloud, com";
	"czayman@omailcom"; "carol@noctumalaffair.co.za"; "edoyhartopolka.co.za"; "chariotteoccnia,co.za";
	"litiesonq1645@gmail.com"; "chris@magics.co,za"; "hettage@sazo.ac, za"; "crairassoologmail.com";
	"terreblanche.christelleomail.com"; "everats@amail.com"; "colleen.edovhart@omail.com";
	"cor@tommybummer, co.za"; "davesue@mweb.co.za"; "dtrow@oldmutval.com"; "dibnob@saza.ac.za";
	"wackevza@qmail, com"; "deon,erasmus@optinet,net"; "duncan@smalliones, com";
	"dylanbarsby@gmailcom"; "eiffoster@omail.com"; "edwin@obsid.ora,za"; "emma.e.bucklev@gmail.com";
	"emstockden@omail.com"; "ester.mikaela@omail.com"; "tiaila@iafrica,com";
	"farzaneh.behroozi@gmall.com"; "fbgreene@mweb.co.za"; "frances@communitree.in";
	"levman@iaywalk,co.za"; "pianohammer, oh@omail com"; "capebluelivina@omail.com";
	"katunduw@telkomsa, net"; "quynicol@worldonline, co, za"; "a, derevmaeker@omail.com";
	"ampen@mweb.co,za"; "hermschle@amail.com"; "hilary, ibuttomail.com"; "holvyildav@gmail.com";
	"howard@obz.capetown"; "hvdmerwe@csvrorozz"; "Glass.an@amail.com"; "ivan@ivansams.com";
	"chambersi@rahs.oro.za"; "jacoul.klarenbeek@gmail.com"; "iohanbeaurain@gmail.com";
	"123imbissettoomail com"; "jan@windowline.co,za"; "ivorster@media 4 , com";
	"Ms.j.i, matthews@gmail.com"; "ianetcronie@omail.com"; "Jean.s.ramsay@amail.com"; "jen"
	bader@mweb.co.za"; "outlook BB02B668A234A285@outlook.com"; "ilwyeth@omail.com";
	"joubertill @omail.com"; "jodiallemeier@amail.com"; "Terreblanche.christelle@gmail.com";
	"driovrobinson@starshine co,za"; "iheerden@mweb, co.za"; "jvanderviuatomweb.co,za";
	"Justin, floor@gmailcom"; "karawendylevy@omail.com"; "karen@flipder.co,za"; "Katharinem7@omail.com";
	"michael@sundevelooment, co.ã"; "kechilkohotmail.com"; "lara, ojetersen@omail.com";
	"youngberv48@gmail com"; "Lauraschulz8@omail.com"; "Leighlamb14@omail.com";
	"Ieigh.lambrechts@webberwentrel.com"; "leebeniafild@omail.com"; "lenita, duplessis@omail.com";
	"leslie.london@uct,ac,za"; "lianne@stbb,co,za"; "louis.stanford@amail.com"; "louisetudoriones@gmail.com";
	"Luciamenicanti@omail.com"; "lynetteamunro@gmail.com"; "marcel@marcel.co,za";
	"margaret@fagan.co.za"; "majblas@iafrica.com"; "Marine leblond@gmail.com"; "marion@smalliones.com";
	"marius@visuals,ty"; "mark@neville,za,net"; "mark@iacksonfilm, co.za"; "marki@redefine.co.za";
	"mark@derrickcanetown.com"; "mark@derrickcapetown.com"; "mark@derrickcapetown,com";
	"marthinai@oculusinnovations.co.za"; "missi@omail.com"; "marykeolivier@omail.com";
	"melanialo@gmail.com"; "mvs@mvs.za.org"; "michellecolis@gmail.com"; "minnaiv69@omail.com";
	"mirandadutoit@omail.com"; "miriambreytenbach@omail.com"; "nasimacoovadia@nmail.com";
	"natalie leon@mrcac.za"; "nodi@oia.co.za"; "oliviaandrews@yahoo.co.uk"; "pam.brittowolco.za";
	"anaikala@gmail.com"; "visualhistoryuw¢gmail.com"; "peter.coates@telkomsa.net";
	"peterwilliamsashman@omail.com"; "manager@fol.org.za"; "info@fol.org,za";
	"philippahigoins5789@omail.com"; "richard, andrew@yahoo,co.uk"; "rstanbridge@amail.com";
	"robket@omail com"; "rol.hunter@omail.com"; "ros@saao.ac,za"; "ros.skelton@gmail.com";
	"driver jowitt@hotmail com"; "sarah@tique.co.za"; "sarah@sarahrice.co.za"; "sheilapi@icon.co.za";
	"shonahomac, com"; "Simon@visser,archi"; "simon@visserarchitects,co.za"; "sh@saao,ac,za";
	"Vanderspuv38@gmail.com"; "susangredley@gmail.com"; "moses, sue@omail.com";
	"taliameer@omail.com"; "tania.mackenzie@omail.com"; "targuin@imago-visual.com";
	"terence.visagie@gmall.com"; "tessatoerien@omail com"; "hiacx@toms-surfocards.com";
	"tracybarclay04@gmail.com"; "heimekanik@omail.com"; "tchuohes@omail.com"; "treevora@omall.com";
	"chair@trup,org, ze"; "secretary@trup.org.zat; "virginia, mackenny@uctac.za"; "wdm@astro4dev.ora";
	"iwerner@mweb.co.za"; "willem@willembuhrmann.co.za"; "william@frater.co.za";
	"wolfoang@campaignforeducation,orq"; "yoavandi@gmail.com"; "sabina,favaro@gmail.com";
	"nschwarto@waterfont.co.za"; "tame@telkomsa.net"; "camelacious@gmail.com"; "dolmike1@omail.com";
	"vining.emily@gmail.com"; "emma,vandervliet@gmail.com"; "esmegoldblat9@amail.com";
	"eugenie.skelton@amail.com"; "underhavh@gmail.com"; "jakemorris010amail.com";
	"projects@spiritofafrica.co,za"; "jontyonu.org,za"; "bex87davies@gmail.com"; "jvanderviugtomweb.co.za";
	"rick.white16@hotmail.com"; "Seth,til@gmail.com"; "soniadv@live.co,uk"; "tracevicighlawson@amail.com";
	"treve@incite co.za"; "alexdmueller@omail.com"; "amienadavids@omail.com"
Subject:	PROPOSED APPLICATION FOR REZONING, APPROVAL OF COUNCIL AND DEVIATIONS FROM CITY POLICIES IN RESPECT OF ERF 151832, 6 LIESBEECK PARKWAY (BOUNDED BY LIESBEECK PARKWAY AND OBSERVATORY ROADS), OBSEVATORY
Date:	01 October 2020 16:05:00
Attachments:	image001.0ng
	image002.ipg
	ADPeal DECISION LEITER ERE 151832 .dif

Good Day
Please see attachment for your attention.
This letter is addressed to the applicant or to an objector in the case where there has been an objection to the above application.

My department has now issued the notification of the decision of the MPT and related

appeal rights by registered mail. While the reasons for this are explained in the registered letter, all parties did also not agree to being notified via e-mail. Also note: not all parties provided their physical/postal addresses to enable notification via post.

As a courtesy, I have attached a copy of the letter.
For your information, since the letters were registered at the post office on the 01 October 2020 (i.e. today), please note the contents in the attached letter relating to the due date for any appeals.

You are welcome to reply via e-mail.

Kind Regards / Vriendelike Groete/ Ozithobile
Letitia Ohlson-Isaacs
Table Bay District: Customer Interface
Development Management
Spatial Planning and Environment Directorate
WORKING FROM HOME DURING COVID 19
$T \quad+27214006407$
E Letitia.Ohison-Isaacs@capetown.gov.za
Development Management Information Hubs:Table Bay
CCT Contacts | CCTMedia and News | Report a fault | Account Queries | COVID-19
0860103089 (free call 24/7)
cid:image001.jpg@01D66BCE.317F2720

4

Please note that the Municipal Planning Bylaw has been amended, see the link below 2020 Amended MPBL
Land use and building applications may only be submitted via the City's e-Services portal. Register as a business partner to submit your application via e-Services and track its progress.

CITY OF CAPE TOWN
ISIXEKO SASEKAPA

Dear Sir / Madam

PROPOSED APPLICATION FOR REZONING, APPROVAL OF COUNCIL AND DEVIATIONS FROM CITY POLICIES IN TERMS OF THE CITY OF CAPE TOWN MUNICIPAL PLANNING BYLAW IN RESPECT OF ERF 151832, 6 LIESBEECK PARKWAY (BOUNDED BY LIESBEECK PARKWAY AND OBSERVATORY ROADS), OBSEVATORY, CAPE TOWN

This letter is addressed to the applicant or to an objector in the case where there has been an objection to the above application.

The application with reference in the above regard, refers.
The Municipal Planning Tribunal (MPT) on 18 September 2020 approved in terms of section 98(b) of the City of Cape Town Municipal Planning By-Law, 2015 (MPBL), the application for rezoning, approval of council and deviations from city policies, as per the attached Annexure A.

Kindly also note where applicable, the above approval does not guarantee approval of any related building plan application in terms of the National Building Regulations and Building Standards Act, No 103 of 1977 and that building work may therefore only commence once such plans are formally passed.

Reasons for the above decision are set out in the attached extract of the minutes of the meeting concerned, dated 18 September 2020.

Should the reasons for the above decision not be contained in this notification you are advised in terms of section $104(2)(c)$ of the MPBL and section 5 of the Promotion of Administrative Justice Act, No 3 of 2000 that you are entitled to request in writing reasons for the above decision.

In terms of section 108(1) of the City of Cape Town Municipal Planning By-Law, 2015, you may appeal to the Appeal Authority against the above decision by giving written notice of the appeal and grounds of appeal and by completing and signing the prescribed form.

In terms of section 108(1) of the City of Cape Town Municipal Planning By-Law, 2015, you may appeal to the Appeal Authority against the above decision by giving written notice of such appeal and the grounds of appeal.

An appeal, including the written notice and the grounds of appeal (and not only the intention to appeal), must be lodged on the prescribed form (the form can be downloaded here: (http://www.capetown.gov.za/LandUseAppeals) with the City Manager, c/o the Table Bay District Manager, at the following email address: appeals.tablebay@capetown.gov.za within 21 days of the

CAR ADDERLEY STREET AND HERTZOG BOULEVARD CAPETOWN, 8001

date of notification of the decision. If the appeal cannot be lodged by email it may be hand delivered to the $2^{\text {nd }}$ floor. Media City Building, Chr of Hertzog and Heerengracht Boulevard, Cape Town or faxed to $0214005830 / 0862029981$ within 21 days of the date of notification of the decision. See definition of notification date to be read together with the provisions of the Interpretation Act 1957 in footnote below to determine the closing date for submission. If this letter has been sent to you by registered mail, then it is your responsibility to establish the date stamped upon the receipt for registration issued by the post office when accepting this notice from the City of Cape Town. You will need to contact the post office and use the tracker number on the envelope for this purpose.

Failure to comply with the above requirements and provisions within section 108 of the MPBL will result in the appeal being ruled invalid.

Kindly note that the operation of the approval of this application is suspended and may therefore not be acted on until such time as the City gives notice that no appeal has been lodged and the decision is effective or the date that the appeal is decided by the appeal authority. If an appeal is lodged against a condition of approval the City may determine that the operation of the approval of the application is not suspended.

Yours faithfully

for DIRECTOR: DEVELOPMENT MANAGEMENT
Notes and extracts from sections of the City of Cape Town Municipal Planning By-Law, 2015
105 Effective date of decision
(2) The effective date of a decision in terms of this By-Law is -
(a) the date that the City gives notice hot no appeal has been timeously lodged and that the decision is accordingly effective: or
(b) subject to subsection (3), it on appeal is timeously lodged, the date that the appeal is decided by the appeal authority.
(3) If an appeal is lodged only against a condition imposed in terms of section 100 , the City may determine that the operation of the approval of the application is not suspended

Method and date of notification
The date of notification is determined as follows: If the notification is provided-
(a) orally, it is the date of ord communication
(b) by hand it is the date of delivery or collection:
(c) by registered port, it is regarded as the fourth day after the date stamped upon the receipt tor registration issued by the post office which accepted the notice: or
(c) by emo of fax it is the date that the emos of fox is sent.

Interpretation Act No 33 of 1957 section 4
Reckoning of number of days. - When any particular number of days is prescribed for the doing of any act, of for any other purpose, the same shan be reckoned exclusive of the first and inclusive of the last day, unless the last day happens to far on a sunday or on any pubic holiday, in which case the time shat be reckoned exclusive of the first day and excluaje also of every such sunday or public holiday.

As an example. if the date of notification is 1 October, then the first day of calculation of the 2 day appeal period wail be 2 October and the 21 st day would be 22 October. It 22 October is either a Sunday or a public h holiday, then the closing date will the next following day that is not either a Sunday or a public holiday.

INTERVIEW

SMPTNW 06/09/20 WARD 57: APPLICATION FOR REZONING, APPROVAL OF COUNCIL AND DEVIATIONS FROM CITY POLICIES IN TERMS OF THE MUNICIPAL PLANNING BY-LAW, 2015: ERF 151832, 6 LIESBEECK PARKWAY (BOUNDED BY LIEBEECK PARKWAY AND OBSERVATORY ROADS), OBSERVATORY

Ms San Giorgio introduced the application
Messrs Florence, Arendse and Hugo spoke in support of the application. Mr Hugo made a PowerPoint presentation (Annexure 1)

Ms Mgedezi made a powerpoint presentation (Annexure 2). Mr Jenkins, Prof London and Mr Cogger addressed the Tribunal and spoke against the application. Mr Cogger's written submission is attached (Annexure 3)

The applicant was given an opportunity to rebut
The MPT asked several questions to the applicant, the objectors and the case officer. The individual MPT members gave extensive input in support of the application

UNANIMOUSLY RESOLVED that:
a. The application for the rezoning of the property from an Open Space Zoning 3: OS3 to a Subdivisional Area Overlay Zone in respect of Erf 151832. 6 Liesbeek Parkway Observatory BE APPROVED in terms of Section 98(b) of the Municipal Planning By-Law subject to conditions contained in Annexure A attached.
b. The application for the approval of Council to permit retaining structures to be 5.7 m high in Precinct 1 and 5.9 m high in Precinct 2 in lieu of 2.0 m high above ground level in respect of Erf 151832, 6 Liesbeek Parkway Observatory BE APPROVED in terms of Section 98(b) of the Municipal Planning By-Law subject to conditions contained in Annexure Al attached.
c. The application for:

- the deviation from the Table Bay District Plan
- Deviation from the Floodplain and River Corridor Management Policy (2009) seeking permission to:
i. develop/obstruct the free flow of water within the 20 -year and 50 -year floodplain and to seek the in-filling below the 1:50 year floodplain.
ii. Deviation from the Management of Urban Stormwater Impacts Policy (2009) seeking permission to:

Deviate from the annexure table requiring 24 -hour extended detention of the 1 -year Recurrence Interval, 24 -hour storm event in a greenfield development greater than $50000 \mathrm{~m}^{2}$; to deviate from the annexure table

requiring up to 10 year recurrence interval peak flow to be reduced to pre-development level in a greenfield development greater than $50000 \mathrm{~m}^{2}$ and to deviate from the annexure table requiring up to 50 year recurrence interval peak flow to be reduced to existing development levels in a greenfield development greater than $50000 \mathrm{~m}^{2}$.
in respect of Eff 151832, 6 Liesbeek Parkway Observatory BE APPROVED in terms of Section 98(b) of the Municipal Planning By-Law subject to conditions contained in Annexure A attached.

REASONS FOR DECISION

The applications for the rezoning from an Open Space 3 to a Subdivisional Area Overlay Zone, approval of Council and deviation from policy comply with the requirements of Sections $99(1)(2)(3)$ of the MPBL and are approved for the following amended and summarized reasons:

1. All the applications required in terms of the MPBL have been applied for and relevant public participation processes followed.
2. The applications are consistent with the requirements of the MSDF as the property is located within the Urban Inner Core and integration zone where development of this nature is encouraged. To this extent, the deviation from the District Plan is warranted
3. The proposal will result in intensification and densification of the land which is supported by City policy.
4. A diverse range of land uses will be accommodated on the property.
5. Densification and intensification of land contributes toward the spatial restructuring of the City and ensures better utilization of the service infrastructure.
6. Short and long term employment opportunities will be created.
7. The mixed use development is suitably located being surrounded by residential, business and industrial uses.
8. The property provides access to opportunities being located close to, and providing access to, places of employment and various services and amenities.
9. Reduced parking provision ensures improved thresholds for public transport use.
10. The reduced parking ratio is considered rational as the site is located within a public transport corridor.
11. It will result in road improvements that will offer wider connections to various parts of the city.
12. There will be no adverse impact on the service infrastructure as either sufficient capacity exists or improvements to the services infrastructure will be implemented to accommodate the proposal. In some instances, on-site provision will be made to accommodate services.
13. Heritage impacts have been carefully considered and heritage components will be incorporated into the development.
14. Certain landscaping and other measures are proposed to mitigate against impacts on the receiving environment.
15. Specialist studies sufficiently demonstrate that measures proposed will mitigate against impact of development within the floodplain. This is agreed to by the competent Department.

MEDIA CITY BUILDING, 2ND FLOOR,

CNR ADDERLEY STREET AND HERTZOG BOULEVARD CAPE TOWN, 8001

16. The proposal supports the principles contained in both the LUPA and SPLUMA - the developer also offered to provide inclusionary housing in support of the spatial justice principle
17. The permitting of GB7 with a height limitation in Precinct 2 enables flexibility to be achieved at SDP Precinct level
18. The elevated height in Precinct 2 enables a sensitive bulk distribution where it is deemed most appropriate
19. In order to develop a viable solution for potential flooding and storm water management, deviation from Council policy in this regard is required and merited in order to facilitate a sustainable flood/stormwater management system for the development

Annexure Al

Delete paragraph 4 and 5
Conditions imposed in terms of Section 100 of the MPBL
Note: These conditions refer to the original conditions in the report and not the amended conditions tabled at the meeting
6.1 The property shall accommodate two Precincts (Precinct 1 and Precinct 2) comprising areas designated for General Business purposes and the overall combined floor space for the two Precincts shall not exceed 150 $000 \mathrm{~m}^{2}$
6.1.1 Precinct 1 shall not exceed a floor space of 60000 m 2 and Precinct 2 shall not exceed a floor space of $90000 \mathrm{~m}^{2}$
6.1.2 The maximum height that will be permissible in the GB7 zone must not exceed 44.7 m above base level.

Delete the heading 'Subdivision'
6.2 The subdivision plan required pursuant to in 6.1 above, shall -
6.2.1 Accompany the site development plan submissions, and
6.2.2 Be in accordance with the indicative subdivision plan (Concept subdivisional area plan) attached in Annexure D1 attached
6.3 The submission of a subdivision plan clearly identifying the
a. Cadastral boundary of the site and each portion
b. Extent of each portion
c. Zone of each portion including the sub-zone as approved herein
d. Servitude rights of way registered in favour of the general public
e Services.
Delete paragraph 6.3.1
6.3.1.1 Portion 3 of the subdivision shall be zoned for Open Space Zoning 3: Special Open Space purposes and shall be a minimum of $49835 \mathrm{~m}^{2}$ in extent.
6.3.1.2 Portion 3 shall comprise servitude rights of way registered in favour of the general public and shall be to the satisfaction of the authorized official (Development Management).

Amend paragraph 6.3.2 as follows:
6.3.2 A servitude right of way to permit the general public access across internal private roads shall be registered prior to the first occupancy to the satisfaction of the authorized official

Delete paragraph 6.3.3
Replace the heading 'Development Framework' with 'Site Development Plan'

Amend paragraph 6.4 as follows:
6.4 Prior to any development, the owner/developer shall submit an SDP for approval by the authorized official

Amend 6.4.1 as follows:
6.4.1 The SDP mentioned in 6.4 above shall be informed by the HIA/EIA and principles established in the Urban Design Study, Visual Impact Assessment, Hydrology Study (which may be amended to meet further requirements of relevant City departments).

Amend paragraph heading 6.4.2 as follows:

6.4.2 The SDP shall, furthermore, include -

- Overall site design;
- Spatial distribution of land uses within each Precinct;
- Phasing of development across the site:
- Vehicular movement and access arrangements;
- NMT movement and linkages to NMT routes external to the development
- Areas of historic significance with specific regard to areas on the property where the history of the property will be memorialised;
- Public and private spaces;
- Open spaces with associated linkages external to the development;
- Edges of the site.
- Character Precincts identified in the HIA/EIA, Visual Impact Study and Urban Design Study.

Delete paragraph 6.4.3
6.5 Each character Precinct referred to in 6.4.2 above shall
6.5.1 Ensure that buildings located along Berkley Road extension shall be higher than those located along the southern edge of the eco-corridor identified in the EIA.
6.5.2 Have regard for the heights of buildings and display a hierarchy of spaces, demonstrate the treatment of corners and edges, internal roads and building being stepped to accommodate light penetration.
6.5.3 Identify appropriate locations where foreground and background buildings are to be situated.

Delete paragraph 6.6 Delete paragraph 6.6.1

6.6.2 The design of each Precinct shall show -

- The extent of each Precinct:
- Character areas;
- Appropriately located bulk, including for example: - hierarchy of spaces; - light penetration; and - foreground and background buildings;
- Visual/view corridors;
- Road / built form interfaces;
- Any boundary treatments
- Floor space ratio per Precinct.
- Land use mix,
- Number of parking bays,
- Gateway buildings;
- Landscaping interventions.
- NM;
- Maximum heights building heights measured from base level:
- Floor space per Precinct;
- Ranges of uses having regard to the permissible floor space;
- The number of parking bays provided;
- Public, semi-public and private spaces
- Interface conditions with the public realm having specific regard to the Urban Design policy demonstrating compliance with the principles contained therein and;
- Holding areas for public transport stops.

Delete paragraph 6.6.3

6.7 In respect of Precinct 1:
6.7.1 Building heights shall ensure that the lowest buildings observe the heritage indicators in relation to the SAAO (Erf 26493 -to the east of the property).
6.7.2 East/west pedestrian access into the retail component shall be open-to-the-sky and shall permit public access that links to the wider NMT network and surrounds.
6.7.3 Gateway buildings shall be reflected in height and architectural treatment.
6.7.4 Buildings shall be designed to ensure an appropriate interface with the surroundings.
6.8 In respect of Precinct 2:
6.8.1 The built form shall be separated to a greater degree than that proposed with greater levels of articulation to break up the monolithic form still experienced.
6.8.2 Highest buildings are to respond to the higher order Berkley Road. The height, mass, and bulk of buildings needs to be carefully considered to avoid conditions that may cause a 'walled development response'.

Amend paragraph 6.9 as follows:
6.9 Each Precinct plan and all subsequent Site Development Plan shall be accompanied by a bulk register detailing:

- Floor space per land use within each Precinct utilised and residual available:

- Overall floor space for the property utilised and residual available:
- Parking provision per Precinct required and that constructed.
6.10 The floor space allocated per Precinct shall not be transferable between Precincts.

Delete paragraph 6.11
6.12 The proposed link road alignment and form shall be designed to further reduce the negative visual impact on the "sense of place" experienced so as not to detract from the public and NMT users' experience, especially within and adjacent to, the ecological corridors.
6.13 Traffic circles provided on the property shall endeavour to accommodate a NMT prioritised environment which will facilitate the accessibility of the OS3 as part of the NMT route.
6.14 Detailed design of any vehicular or pedestrian control measures introduced on the property shall accompany the SDP for each phase.

Delete paragraph 6.15
Delete paragraph 6.16
6.17 The base level indicated for buildings and structures shown on each SDP shall accord with that indicated in Annexure C17.

Amend heading 'Land Uses' to 'Zoning and Land Uses' Amend paragraph 6.18 as follows:
6.18 The land uses accommodated on-site in use zones GB3, GB6 and GB7 shall be limited to:
-Business Premises (Shops, Offices, Restaurants)

- Flats (including a minimum of 6000 m 2 of inclusionary housing or 20% of the residential component - whichever is the greatest)
- Hotel
- Place of entertainment (gym, conference facility, events pavilion)
- Place of Instruction
- Parking appurtenant to the abovementioned uses
- Ancillary uses appurtenant to uses accommodated on the property.

Delete 6.19
Amend paragraph 6.20 as follows:
6.20 The provision of inclusionary housing shall be interspersed with the open market dwelling units and other activities. At least $6000 \mathrm{~m}^{2}$ (or 20% of the residential component - whichever is the greater) shall be provided for affordable housing, as defined in the MSDF and must be indicated on the SDP and at building plan submission stage. The developer shall submit the plan for implementation of rental units in perpetuity, which shall be to the satisfaction of the authorized official
6.21 Housing typologies within the River Club shall be varied in typology and nature.
Replace paragraph 6.22 with the following:

6.22 An Owners' Association shall be established, as provided for in the ByLaw, to be responsible for maintenance and management of the private roads and private open spaces

Landscape plan

6.23 A master landscape plan, drafted by a suitably qualified landscape architect, shall be included in the development framework referred to above. Furthermore, the master landscape plan shall -
6.23.1 Conform to the associated guidelines and principles set out in the landscape guidelines accompanying this application and shall be generally in accordance with the landscape concept plan submitted.
6.23.2 The master landscape plan shall detail

- Planting, terrestrial and riverine amongst others that will be removed, retained, transplanted and new planting;
- The provision of buffer areas along the river/canal edges;
- Servitude rights of way;
- Hard and soft landscaping
- Areas of historic significance and the memorialising the history of the site
- Street furniture
- Lighting and light fixtures across the site
- Provision of attenuation measures (including vegetated swales, bioretention areas, source control, etc.) which shall have regard to the stormwater flood management plan referred to below
- NMT routes comprising pedestrian and cycle paths, amongst others and links to existing NMT routes and networks;
- NMT routes shall have connections with existing,
- A plan for the phased development of the site and
- Flood attenuation measures
6.23.3 The master landscape plan referred to in above shall be to the satisfaction of the authorized official (Development Management).
6.23.4 A detailed landscape plan shall accompany each SDP which shall be generally in accordance with the master landscape plan and shall be to the satisfaction of the authorized official (Development Management).
6.23.5 All corresponding and adjacent open spaces details of the development area shall correspond, and be integrated, with the City of Cape Town's open spaces, having regard to the streets, pedestrian walkways, amongst others and shall be to the satisfaction of the authorized official (Development Management).
6.23.6 An open space register shall be submitted with each application submitted with each Precinct plan showing
6.23.6.1 Hard and soft landscaping
6.23.6.2 Ecological areas
6.23.6.3 Space of active play and
6.23.6.4 Heritage spaces.
6.24 The developer/owner shall be responsible for implementation of the approved master landscape plan and landscape plans (including all costs) in accordance with the landscape phasing plan.

6.25 The Owners' Association shall ensure the maintenance and upkeep of the riverine habitat in respect of portions of the Liesbeek River canal that has been decanalised.
6.26 The developer shall be responsible for all costs associated with implementation of landscaping.
6.27 The owner/developer shall submit a Construction Phase Environmental Management Plan prior to commencement of construction demonstrating how habitats will be protected during the construction phase of the development to the approval of the delegated authority (Development Management) in consultation with the Directors: Environment and Heritage Resources Management and Catchment Stormwater and River Management.
6.28 All habitable spaces shall be provided above the 1:100-year floodplain in accordance with various City policies. Catchment and Stormwater Management

Catchment and Stormwater Management

6.29 A Stormwater Management Plan for the property shall be submitted for the approval of the delegated authority (Development Management) in consultation with the Director: Catchment Stormwater and River Management in accordance with their requirements which may include further studies or modelling to be undertaken.
6.30 The developer/owner shall ensure that the necessary measures in mitigation of impacts as a consequence of flood level rise, including any necessary insurances, to safeguard properties affected by flood level rise as a consequence of this submission.
6.30.1 Any measures proposed in mitigation of the submission, shall be to the approval of the authorized official (Development Management) in consultation with the Director: Catchment, Stormwater and River Management.

Delete paragraph 6.31
Delete paragraph 6.31.1
6.32 The owner/developer shall provide a detailed river corridor management plan (as per requirements of Catchment Stormwater and River Management).
6.32.1 The plan referred to in 6.32 above, shall show measures to enhance water quality and restoration of water flows to the natural Liesbeek River, in addition to the management of the quality of the stormwater discharging into the Liesbeek River.
6.32.2 The plan shall be submitted simultaneously with the submission of the Stormwater Management Plan.
6.32.3 Any implementation measures referred to in 6.32 .1 and 6.32 .2 shall be to the account of the owner/developer.
6.33 The proposed upgrade of the Liesbeek River Canal on the eastern side of the property shall be subject to detailed Construction and Operational Environmental Management Plans (including plans, elevations and sections) for the design and management of the future rehabilitated environment to the approval of the delegated authority (Development Management) in consultation with the Director: Catchment Stormwater and River Management.
6.34 The rehabilitation of the canalised section of the eastern Liesbeek River shall accord with international best practice trends and is not to be regarded as a substitution of habitat for filling in the historic Liesbeek River channel.
6.35 A report drafted by a suitably qualified professionally registered engineer shall accompany the first SDP submission and shall demonstrate that all (proposed) new and existing structures on the property, on the unsubdivided remainder Eff 151832, can withstand the forces and effects of floodwaters to the satisfaction of the delegated authority (Development Management) in consultation with the Director: Water and Waste (Catchment Stormwater and River Management).
6.36 The determination of the buffer width along each river and riparian landscape shall be to the satisfaction of the Director: Development Management in consultation with the Director: Water and Waste (Catchment, Stormwater River Management).

Amend paragraph 6.37 as follows:

6.37 Flood attenuation measures for the development as proposed and contained in the Hydrologic Study or any revision or amendment thereof that may be required resulting from this approval shall be approved by the Catchment Stormwater and River Management Department.
6.38 Upon the advice of the Director: Catchment, Stormwater and River Management, should it be so deemed necessary by said department, flood warning systems shall be installed and to the developer/owner/ home owner's association's account.

Transport
6.39 The proposed road infrastructure and intersections as recommended in the TIA be implemented and that Malta/Berkley / Liesbeeck intersection shall be design option 2 as indicated in the TIA drafted by Aurecon.
6.40 Improvements to Liesbeek Parkway to prevent flooding of the Liesbeek Parkway shall be implemented to the owner/developer's account and shall be to the approval of the Director: Road infrastructure and Management and Director: Transport Forward Planning (Transport Planning).
6.41 Detailed civil engineering plans shall provide for the road upgrades along with the associated costs which shall be to the developer/owners account.
6.42 The proposed Public Transport routes and infrastructure facilities shall be provided to the satisfaction of the Director: Transport Forward Planning (Transport Planning).
6.43 No trapped low points be created with the geometric design of all roads, parking areas and overland escape routes.
6.44 The developer shall be responsible for the reinstatement of all damaged municipal infrastructure after completion of the construction work to the full municipal standards.
6.45 At least 4801 parking bays shall be provided on the property where Precinct 1 shall accommodate 1829 parking bays and Precinct 2 shall accommodate 2972 parking bays.
6.46 Shared parking shall be encouraged.
6.47 In the event that parking is provided above the 1:100-year floodplain provision shall be made for future conversion thereof to enable the conversions to habitable space in the future.
6.48 Signage shall be displayed along Liesbeek Parkway and any other road identified by Director: Catchment, Stormwater and River Management and/or Director: Transport Forward Planning (Transport Planning) warning motorists of the likelihood of flooding.
6.49 Provision shall be made internal to the development for shared parking to occur between businesses and residential uses to prevent the underutilisation of parking.

Amend paragraph 6.50 as follows:

Provision shall be made internal to the development for a holding area to accommodate stop and drop facilities to the approval of the Director: Transport Forward Planning (Transport Planning).
6.51 Prior to the approval of a Site Development Plan, any further permissions and approvals of Heritage Western Cape and/or the Department of Environment and Development Planning shall be obtained.

Note:

1. In accordance with the Item 136 of the development management scheme, the submission of any further land use applications whether as a consequence of MPT Report Template - 8 June 2017 Page 263 of 277 conditions imposed or not shall be subject to further comment and may be subject to further conditions to ensure the appropriate development of the property.
2. The conditions of the Provincial Administration: Western Cape (Department of Transport) shall be adhered to.
3. The requirements of the Director: Asset Management and Maintenance.
4. Various requirements of the National Water Act must be complied with in order to provide for certain water uses.
5. The requirements of various service branches in respect of water and sanitation, water and sewer, solid waste and electrical connections to the site.
6. These conditions shall be read in conjunction with the Record of Decision as submitted by the Heritage Western Cape dated January 2012 attached as Annexure 1 .
7. In respect of the subdivision: The conditions referred to be shall relate only to the subdivision of the consolidated property into portions 1 and 2 . The

further subdivision of portions 1 and 2 shall necessitate circulation to branches for comment and further service related conditions in respect of the subdivisions to be imposed.
8. A home owners' association constitution shall be submitted after the further subdivision of each superblock for approval of the authorized official

Add a 'Note' as follows:
9. Pursuant to this approval, further development of the property shall consider the subdivision conditions referred to in the report under consideration

FOR INFORMATION: SAN GIORGIO / SEPTEMBER

SMPTNW 07/09/20 MEETING CLOSING

The Chairperson thanked the Councillors, SMPTNW Panel members and Officials for their input and for logistical arrangements of the meeting.

REASONS FOR DECISION

The applications for the rezoning from an Open Space 3 to a Subdivisional Area Overlay Zone, approval of Council and deviation from policy comply with the requirements of Sections $99(1)(2)(3)$ of the MPBL and are approved for the following amended and summarized reasons:
20. All the applications required in terms of the MPBL have been applied for and relevant public participation processes followed.
21. The applications are consistent with the requirements of the MSDF as the property is located within the Urban Inner Core and integration zone where development of this nature is encouraged. To this extent, the deviation from the District Plan is warranted
22. The proposal will result in intensification and densification of the land which is supported by City policy.
23. A diverse range of land uses will be accommodated on the property.
24. Densification and intensification of land contributes toward the spatial restructuring of the City and ensures better utilization of the service infrastructure.
25. Short and long term employment opportunities will be created.
26. The mixed use development is suitably located being surrounded by residential, business and industrial uses.
27. The property provides access to opportunities being located close to, and providing access to, places of employment and various services and amenities.
28. Reduced parking provision ensures improved thresholds for public transport use.
29. The reduced parking ratio is considered rational as the site is located within a public transport corridor.
30. It will result in road improvements that will offer wider connections to various parts of the city.
31. There will be no adverse impact on the service infrastructure as either sufficient capacity exists or improvements to the services infrastructure will be implemented to accommodate the proposal. In some instances, on-site provision will be made to accommodate services.
32. Heritage impacts have been carefully considered and heritage components will be incorporated into the development.
33. Certain landscaping and other measures are proposed to mitigate against impacts on the receiving environment.
34. Specialist studies sufficiently demonstrate that measures proposed will mitigate against impact of development within the floodplain. This is agreed to by the competent Department.
35. The proposal supports the principles contained in both the LUPA and SPLUMA - the developer also offered to provide inclusionary housing in support of the spatial justice principle
36. The permitting of GB7 with a height limitation in Precinct 2 enables flexibility to be achieved at SDP Precinct level
37. The elevated height in Precinct 2 enables a sensitive bulk distribution where it is deemed most appropriate
38. In order to develop a viable solution for potential flooding and storm water management, deviation from Council policy in this regard is required and merited in order to facilitate a sustainable flood/stormwater management system for the development

ANNEXURE AT
(Conditions amended by the MPT 18-09-2020)
[Words indicated in italics have been added, words struck through must be omitted]

REF: Case ID: 70396369
in this annexure:
"City" means the City of Cape Town
"The owner" means the registered owner of the property
"The property" means Erf 151832, 6 Liesbeek Parkway Observatory
"By-law" and "Development Management Scheme" has the meaning assigned thereto by the City of Cape Town Municipal Planning Bylaw, 2015
"Item" refers to the relevant section in the Development Management Scheme
"Commissioner: TDA" means Commissioner: Transport and Urban Development Authority or his/her delegatee
"Director: DM" means Director: Development Management or his/her delegatee.

1. REZONING GRANTED IN TERMS OF SECTION 98(b) OF THE MUNICIPAL PLANNING BY-LAW:

1.1. Rezoning of the property from Open Space 3: Private Open Space zone to a Subdivisional Area (i.e. general business and open space zones).
2. APPROVAL GRANTED IN TERMS OF SECTION 98(b) OF THE MUNICIPAL PLANNING BYLAW:
2.1. To permit the Approval of Council in terms of Item 126 of the DMS to enable retaining structures to be constructed to a height of more than the permitted 2.0 m above the existing level of the ground in lieu of 2.0 m .
3. DEVIATIONS FROM THE FOLLOWING CITY POLICIES SUPPORTED IN TERMS OF SECTION 98(d) OF THE MUNICIPAL PLANNING BY-LAW:
3.1. With respect to the Table Bay District Plan in order to permit urban development on land designated as "open space", "core 2" and "buffer 1".
3.2. With respect to the Floodplain and River Corridor Management Policy (2009) to develop/ obstruct the free of water within the 20-year and 50-year floodplain and to seek the in-filling below the 1:50 year floodplain foreluding the in filling of the :ifiesbeot Rivert.
3.3. With respect to the Management of Urban Stormwater Impacts Policy (2009) to enable deviation from the annexure table requiring

- 24 hr extended detention of the 1-year Recurrence Interval, 24 hr storm event in a greenfield development greater than $50000 \mathrm{~m}^{2}$
- up to 10 year recurrence interval peak flow to be reduced to pre-development level in a greenfield development greater than $50000 \mathrm{~m}^{2}$ and
- up to 50 year recurrence interval peak flow to be reduced to existing development levels in a greenfield development greater than $50000 \mathrm{~m}^{2}$. moot pey stands in respect of the $/ / 2$ yoen stommwater recurrence/retum intonals for e 24 hr stom event:

 4.1. Rezoning of the property from Open Space -3: Private Open Space zone to a Subelivisional-Area (General Business, Sub-zone-GB7).
 5. DEVIATIONS FROMACITY POLICY IS NOT SUPPORTED IN TERMS -OF SECHON 98(d) OF THE AUNICIPALPLANNING BY LAW RELATING TO:
 5.1. The Floedplainend River Corridor Management Policy (2009) the in filling of the portion of the Liesbeek River on the western side -of property.
 5.2 The Management of Urban Stermwater Impacts Policy (2009) seeking deviations from the requirement to meet the policies pellutantremovaltargets.*
 5.2 .1 Te annexure table requiring 24 heur-oxtended detention of the 1 year Recurrence Interval, 24 h storm event in a greenfield development greater than $50.000 \mathrm{~m}^{2}$ and
 5.2 .2 The requirement to improve the quality of runoff relating to the annexure table requiring poltutantremoveltargets to be met.

6. 4. CONDITIONS IMPOSED IN TERM OF SECTION 100 OF THE MUNICIPAL PLANNING BY-LAW:

6.14.1 The property shall accommodate two precincts (Precinct 1 and Precinct 2) comprising areas designated for General Business purposes and the overall combined floor space for the two precincts shall not exceed $150000 \mathrm{~m}^{2}$.
6.4.1.1 Precinct 1 shall not exceed a floor space of $60000 \mathrm{~m}^{2}$ and Precinct 2 shall not exceed a floor space of $90000 \mathrm{~m}^{2}$.
4.1.2 The maximum height that will be permissible in the $G B 7$ zone must not exceed 44.7 m above base level.

Subdivision

64.2 The subdivision plan required pursuant to in 64.1 above, shall -
64.2.1 Accompany the precinct site development plan submissions,
64.2.2 Be in accordance with the indicative subdivision plan attached in Annexure DI attached, -and
6.2 .3 - Be to the prior approval of the delegated authority (Development Management).
64.3 The submission of a subdivision plan clearly identifying the
a. Cadastral boundary of the site and each portion
b. Extent if each portion
c. Zone of each portion including the sub-zone as approved herein
d. Servitude right of ways registered in favour of the general public
e. Services.
6.3.1. The subdivision plan shell -show the subdivision of the property into three portions eomprising:

- Portion 1 being $48361 \mathrm{~m}^{2}$ in oxtent,
a-Portion 2 being $49148 \mathrm{~m}^{2}$ in extent, and
- Portion 3 being $49835 \mathrm{~m}^{2}$ in extent.
64.3.1.1 Portion 3 of subdivision shall be zoned for Open Space 3: Special Open Space purposes and shall be a minimum of $49835 \mathrm{~m}^{2}$ in extent.
64.3.1.2 Portion 3 shall comprise servitude rights of way registered in favour the general public and shall be to the satisfaction of the delegated authorized official (Development Management).
64.3.2 A servitude right of way to permit the general public access across internal private roads shall be registered prior to the first occupancy ertife issued for the portion 2 in accerdance with Ane Ane to the satisfaction of the authorized official.

6.3 .3 Subject to the prior approval of the delegated autherity (Development Ahangement), sorvitude rights of way to permit the general publicaceessacross any internal privat roads shell beregistere for portions land 3 .

6.3 .4

Development Framework-Site development Plan
 a SDP dovelopment fremow for the property detailing the devolopmentof the site approval by the authorized official.
64.4.1 The SDP framework mentioned in 64.4 above shall be informed by the HIA/EIA and principles established in the Urban Design Study, Visual Impact Assessment, Hydrology Study (which may be amended to meet further requirements of relevant City departments).
64.4.2 The SDP shall, furthermore, include -

- The two precincts mentioned in condition 65.2.
- Overall site design;
- Spatial distribution of land uses within each precinct;
- Phasing of development across the site;
- Vehicular movement and access arrangements;
- NMT movement and linkages to NMT routes external to the development
- Areas of historic significance with specific regard to areas on the property where the history of the property will be memorialised;
- Public and private spaces;
- Open spaces with associated linkages external to the development;
- Edges of the site.
- Character precincts identified in the HIA/EIA, Visual Impact Study and Urban Design Study.

6.4 .3 The framowork shall be to the approvel of the delogated euthority povelopment Alangegement.

Precinct Plans

64.5 Each character precinct referred to in 64.4 .2 above shall
64.5 . 1 Ensure that buildings located along Berkley Road extension shall be higher than those located along the southern edge of the eco-corridor identified in the EIA.
64.5 .2 Have regard for the heights of buildings and display a hierarchy of spaces, demonstrate the treatment of comers and edges, internal roads and building being stepped to accommodate light penetration.
64.5.3 Identify appropriate locations where foreground and background buildings are to be situated.
6.6 Prior to the submissien of site develepment plems, Precinct plans-shallbosubmitted for each precinctand-shallinctude-
6.6.1 Urban design and dovelopment guidelines for the entire dovolopment in generet accordance with 6.4 above.
6.6 .2 4.6 The design of each precinct shall show -

- The extent of each precinct;
- Character areas;
- Appropriately located bulk, including for example: - hierarchy of spaces; - light penetration; and - foreground and background buildings;
- Visual/view corridors;
- Road / built form interfaces;
- Any boundary treatments
- Floor space ratio per precinct.
- Land use mix.
- Number of parking bays,
- Gateway buildings:
- Landscaping interventions.
- NMT;
- Maximum heights building heights measured from base level;
- Floor space per precinct;
- Ranges of uses having regard to the permissible floor space;
- The number of parking bays provided;
- Public, semi-public and private spaces
- Interface conditions with the public realm having specific regard to the Urban Design policy demonstrating compliance with the principles contained therein:
- Holding areas for public transport stops.
6.6 .3 The Procinct plans shall be to the approvalby the delegeted authority fDevelopment Aanggement
64.7 In respect of Precinct 1:
64.7. 1 Building heights shall ensure that the lowest buildings observe the heritage indicators in relation to the SAAO (Erf 26493 - to the east of the property).
64.7.2 East/west pedestrian access into the retail component shall be open-to-the-sky and shall permit public access that links to the wider NMT network and surrounds.
64.7.3 Gateway buildings shall be reflected in height and architectural treatment.

64.7.4 Buildings shall be designed to ensure an appropriate interface with the surroundings.
64.8 In respect of Precinct 2 :
64.8 .1 The built form shall be separated to a greater degree than that proposed with greater levels of articulation to break up the monolithic form still experienced.
64.8.2 Highest buildings are to respond to the higher order Berkley Road. The height, mass, and bulk of buildings needs to be carefully considered to avoid conditions that may cause a 'walled development response'.
64.9 Each precinct plan and all subsequent site development plans shall be accompanied by a bulk registered detailing
- Floor space per land use within each precinct utilised and residual available;
- Overall floor space for the property utilised and residual available;
- Parking provision per precinct required and that constructed.
64.10 The floor space allocated per precinct shall not be transferable between precincts.
6.11 The areapropesed as OS3 on Erf151832, and the remaining full developmentareashat beregistered as public right of way servitude in perpetuity.
6.124 .11 The proposed link road alignment and form shall be designed to further reduce the negative visual impact on the "sense of place" experienced so as not to detract from the public and NMT users' experience, especially within and adjacent to, the ecological corridors.
6.13 4.12 Traffic circles provided on the property shall endeavour to accommodate a NMT prioritised environment which will facilitate the accessibility of the OS3 as part of the NMT route.
6.144.13 Detailed design of any vehicular or pedestrian control measures introduced on the property shall accompany the SDP for each phase.
6.15-SiteDovelopmentPlans (SDP) shallbesubmitfodfor oachindividualdovelomon within the Precinct Plans and Character Areas and with the corresponding Landscape SDP plans.
6.16 - AllSDP's shall beaceordance with the development fremow and precinct plans.
6.174.14 The base level indicated for buildings and structures shown on each SDP shall accord with that indicated in Annexure C17.

Zoning and Land uses

6.18 4.15 The land uses accommodated onsite in use zones GB3, GB6 and GB7 shall be limited to

- Business Premises (Shops, Offices, Restaurants)
- Flats (including a minimum of $6000 \mathrm{~m}^{2}$ of inclusionary house)
- Hotel
- Place of entertainment (gym, conference facility, events pavilion)
- Place of Instruction
- Parking appurtenant to the abovementioned uses and

MEDIA CITY BUILDING, IND FLOOR,
CIR ADDERLEY STREET AND HERTZOG BOULEVARD CAPE TOWN, 8001

- Ancillary uses appurtenant to uses accommodated on the property.
6.19. Notwithstanding the provision of the DAAS, coverage on the property falter subdivision t shell notexeeed 35%.
6.204 .16 The provision of inclusionary housing shall be interspersed with the open market dwelling units and other activities. At least $6000 \mathrm{~m}^{2}$ (or 20% of the residential component - whichever is greater) shall be provided for affordable housing, as defined in the MSDF and must be indicated on the SDP and at building plan submission stage. The developer shall submit the plan for implementation of rental units in perpetuity, which shall be to the satisfaction of the authorized official.
6.214 .17 Housing typologies within the River Club shall be varied in typology and nature.
6.22 With respect to the overall maintenance and management responsibilities for the Property, the-applicant/owner/devoloper shall enter into any necessary agreements with the City prior to issuance of any-oceupancy certificates.
4.18 An Owners' Association shall be established, as provided for in the By-Law, to be responsible for maintenance and management of the private roads and private open spaces.

Landscape plan

6.23 4.19 A master landscape plan, drafted by a suitably qualified landscape architect, shall be included in the development framework referred to above. Furthermore, the master landscape plan shall -
623.14.19.1 Conform to the associated guidelines and principles set out in the landscape guidelines accompanying this application and shall be generally in accordance with the landscape concept plan submitted.
623.24 .19 .2 The master landscape plan shall detail

- Planting, terrestrial and riverine amongst others that will be removed, retained, transplanted and new planting;
- The provision of buffer areas along the river/canal edges;
- Servitude rights of way;
- Hard and soft landscaping;
- Areas of historic significance and the memorialising the history of the site;
- Street furniture;
- Lighting and light fixtures across the site:
- Provision of attenuation measures (including vegetated wales, bioretention areas, source control, etc.) which shall have regard to the stormwater flood management plan referred to below;
- NMT routes comprising pedestrian and cycle paths, amongst others and links to existing NMT routes and networks;
- NMT routes shall have connections with existing, and
- A plan for the phased development of the site.
- Flood attenuation measures
6.23.34. 19.3 The master landscape plan referred to in above shall be to the satisfaction of the delegated authority authorized official (Development Management).

6.23 .4 4.19.4 A detailed landscape plan shall accompany each SD P which shall be generally in accordance with the master landscape plan and shall be to the satisfaction of the delegated authority (Development Management).
6.23 .5 4.19.5 All corresponding and adjacent open spaces details of the development area shall correspond, and be integrated, with the City of Cape Town's open space in addition to having regard to the streets, pedestrian walkways, amongst others and shall be to the satisfaction of the delegated authority (Development Management).
6.23 .6 4.19.6 An open space register shall be submitted with each application submitted with each precinct plan showing
6.23.6.14.19.6.1 Hard and soft landscaping
6.23 .6 .2 4.19.6.2 Ecological areas
6.23 .6 .3 4.19.6.3 Space of active play and
6.23.6.4 4.19.6. 4 Heritage spaces.
6.24 4.20 The developer/owner shall be responsible for implementation of the approved master landscape plan and landscape plans (including all costs) in accordance with the landscape phasing plan.
6.25 4.21 The applicant Owner's Association shall ensure the maintenance and upkeep of the riverine habitat in respect of portions of the Liesbeek River canal that has been decanalised.
6.26 4.22 The developer shall be responsible for all costs associated with implementation of landscaping.
6.27 4.23 The Management Plan prior to commencement of construction demonstrating how habitats will be protected during the construction phase of the development to the approval of the delegated authority (Development Management) in consultation with the Directors: Environment and Heritage Resources Management and Catchment Stormwater and River Management.
6.28 4.24 All habitable spaces shall be provided above the 1:100 year floodplain in accordance with various City policies.

Catchment and Stormwater Management

6.2? 4.25 A Stormwater Management Plan for the property shall be submitted for the approval of the delegated authority (Development Management) in consultation with the Director: Catchment Stormwater and River Management in accordance with their requirements which may include further studies or modelling to be undertaken.
6.304 .26 The developer/owner shall ensure that the necessary measures in mitigation of impacts as a consequence of flood level rise, including any necessary insurances, to safeguard properties affected by flood level rise as a consequence of this submission.
6.30.14.26.1 Any measures proposed in mitigation of the submission, shall be to the approval of the delegated authority (Development Management) in consultation with the Director: Catchment, Stormwater and River Management.

[^21]6.324 .27 The t/owner/developer shall provide a detailed river corridor management plan (as per requirements of Catchment Stormwater and River Management).
6.32+4.27.1 The plan referred to in 6.324 .27 above, shall show measures to enhance water quality and restoration of water flows to the natural Liesbeek River, in addition to the management of the quality of the stormwater discharging into the Liesbeek River.
6.32 .2 4.27.2 The plan shall be submitted simultaneously with the submission of the Stormwater Management Plan.
6.32 .34 .27 .3 Any implementation measures referred to in 6.32 .74 .27 . 1 and 6.32 .24 .27 .2 shall be to the account of the owner/developer.
6.33 4.28 The proposed upgrade of the Liesbeek River Canal on the eastern side of the property shall be subject to detailed Construction and Operational Environmental Management Plans (including plans, elevations and sections) for the design and management of the future rehabilitated environment to the approval of the delegated authority (Development Management) in consultation with the Director: Catchment Stormwater and River Management.
6.344.29 The rehabilitation of the canalised section of the eastern Liesbeek River shall accord with international best practice trends and is not to be regarded as a substitution of habitat for filling in the historic Liesbeek River channel.
6.35 4.30 A report drafted by a suitably qualified professionally registered engineer shall accompany the first SDP submission and shall demonstrate that all (proposed) new and existing structures on the property, on the unsubdivided remainder Eff 151832, can withstand the forces and effects of floodwaters to the satisfaction of the delegated authority (Development Management) in consultation with the Director: Water and Waste (Catchment Stormwater and River Management).
6.36 4.31 The determination of the buffer width along each river and riparian landscape shall be to the satisfaction of the Director: Development Management in consultation with the Director: Water and Waste (Catchment, Stormwater River Management).
6.37 4.32 Flood attenuation measures for the development as proposed and contained in the Hydrologic Study or any revision or amendment thereof that may be required resulting from this approval, including but not limited to alternate measures to filing in of the River, shall be approved by the Catchment Stormwater and River Management.

6.38 4.33 Upon the advice of the Director: Catchment, Stormwater and River Management, should it be so deemed necessary by said department, flood warning systems shall be installed and to the developer/owner/ home owner's association's account.

Transport

6.39 4.34 The proposed road infrastructure and intersections as recommended in the TIA is implemented and that Malta/ Berkeley / Liesbeeck intersection shall be design option 2 as indicated in the TIA drafted by Aurecon.
6.40 4.35 Improvements to Liesbeek Parkway to prevent flooding of the Liesbeek Parkway shall be implemented to the owner/developer's account and shall be to the approval of the Director: Road Infrastructure and Management and Director: Transport Forward Planning (Transport Planning).
6.414.36 Detailed civil engineering plans shall provide for the road upgrades along with the associated costs which shall be to the developer/owners account.
6.42 4.37 The proposed Public Transport routes and infrastructure facilities shall be provided to the satisfaction of the Director: Transport Forward Planning (Transport Planning).
6.43 4.38 No trapped low points are created with the geometric design of all roads, parking areas and overland escape routes.
6.444 .39 The developer shall be responsible for the reinstatement of all damaged municipal infrastructure after completion of the construction work to the full municipal standards.
6.45 4.40 At least 4801 parking bays shall be provided on the property where precinct 1 shall accommodate 1829 parking bays and precinct 2 shall accommodate 2972 parking bays.
6.46 4.41 Shared parking shall be encouraged.
6.47 4.42 In the event that parking is provided above the 1:100 year floodplain provision shall be made for future conversion there of to enable the conversions to habitable space in the future.
6.48 4.43 Signage shall be displayed along Liesbeek Parkway and any other road identified by Director: Catchment, Stormwater and River Management and/or Director: Transport Forward Planning (Transport Planning) warning motorists of the likelihood of flooding.
6.49 4.44 Provision shall be made internal to the development for shared parking to occur between businesses and residential uses to prevent the underutilisation of parking.
6.504 .45 Provision shall be made internal to the development for holding area to accommodate stop and drop facilities to the approval of the Director: Transport Forward Planning (Transport Planning).
$6.5+4.46$ Prior to the approval of a site development plan, any further permissions and approvals of Heritage Western Cape and/or the Department of Environment and Development Planning shall be obtained.

Note:

1. In accordance with the Item 136 of the development management scheme, the submission of any further land use applications whether as a consequence of conditions imposed or not shall be subject to further comment and may be subject further conditions to ensure the appropriate development of the property.
2. The conditions of the Provincial Administration: Western Cape (Department of Transport) shall be adhered to.
3. The requirements of the Director: Asset Management and Maintenance.
4. Various requirements of the National Water Act must be complied with in order to provide for certain water uses.
5. The requirements of various service branches in respect of water and sanitation, water and sewer, solid waste and electrical connections to the site.
6. These conditions shall be read in conjunction with the Record of Decision as submitted by the Heritage Western Cape dated January 2012 attached as Annexure 1 .
7. In respect of the subdivision: The conditions referred to be shall relate only to the subdivision of the consolidated property into portions 2 and 3 . The further subdivision of portions 2 and 3 shall necessitate circulation to branches for comment and further service related conditions in respect of the subdivisions to be imposed.
8. A home owners' association constitution shall be submitted after the further subdivision of each superblock for approval the approval of the Director: Development Management.
9. Pursuant to this approval further development of the property shall consider the subdivision conditions referred to in the report under consideration.

ISIXEKO SASEKAPA

Internal Memorandum

To : Director: Development Managment
Att : Joy San Giorgio, Land Use Management Branch (LUM)
From : Acting Manager: Environmental \& Heritage Management
Subject: DAMS Case 70396369, Cape Town, erf 151832, No. 6 Liesbeek Way, Observatory (River Club): Rezoning, Consent, Deviation from policies.

Date : 23 January 2020

APPLICATION FOR DEVIATION FROM THE TABLE BAY DISTRICT PLAN, REZONING TO SUBDIVISIONAL AREA OVERLAY ZONE, APPROVAL TO CONSTRUCT RETAINING STRUCTURES, \& DEVIATION FROM THE CITY'S FLOODPLAIN AND RIVER CORRIDOR MANAGEMENT POLICY (2009) AND MANAGEMENT OF URBAN STORMWATER IMPACTS POLICY (2009), ERF 151832 CAPE TOWN (RIVER CLUB, OBSERVATORY)

Reference is made to Environmental Management comments dated 15 October 2018, as well as to the Revised Submission (Revision 4) Erf 151832 Cape Town Ref. 4342, Motivation Report (of 216 pages in length), and the Supplementary Information Report (undated) (of about 70 pages in length).

The City of Cape Town's Environmental Management Department was requested at a meeting between the applicant, Development Management Department officials and officials from other departments, on 1 November 2019, to submit revised comments based on supplementary information showing how certain buildings, landscapes and other elements of the development respond to concerns raised to this application.

This comments address the following:

1) The Development Proposal and the Application
2) Heritage Assessment
3) Environmental Assessment
4) Conclusion and Recommendations

1 THE DEVELOPMENT PROPOSAL AND THE APPLICATION

1.1 The Development proposal

This application will allow the following development:

- mixed use development of $150000 \mathrm{~m}^{2}$
- Retail, offices, dwelling units
- Approximately 20% of the total floor space for residential development
- Approximately 20% of the residential component will be allotted to inclusionary housing
- Hotel
- Places of instruction
- Building heights $\pm 16 \mathrm{~m}$ to $\pm 46 \mathrm{~m}$ (3 to 10 storeys) above base level (which will be 5.7 -5.9 m above existing ground levell, i.e. up to 52 m above existing ground level.
- Construction of retaining structures so that roads and habitable spaces are raised above the 1:100year flood plain
- Partial construction of the Berkley Road extension from mid-site to Ndabeni
- The Liesbeek Canal on the eastern boundary of the site will be rehabilitated into a river course
- The 'old' historic Liesbeek River course on the western boundary of the site will largely be filled in with earth, and landscaped to accommodate a vegetated stormwater swale, while the river would be piped below ground.
- An ecological corridor and open space will extend across the site in an east-west direction connecting the stormwater swale with the rehabilitated riverine canal.
- Pedestrian and cycle paths, viewing and seating areas along the rehabilitated canal east of the River Club.

1.2 The Application

1.2.1. The application is for approval of the following:

- A deviation from the Table Bay District Plan to permit urban development on land designated as "open space", "core 2" and "buffer 1", in accordance with section 16 of the MPBL.
- rezoning from Open Space Zoning 3: Special Open Space (OS3) to Subdivisional Area Overlay Zone (SAO)
- approval to construct retaining structures, in terms of Section 42(i) of the MPBL and in accordance with item 126 of the DMS, to be constructed to a height of more than the permitted 2.0 m above the existing level of the ground (to heights of 5.7 m and 5.9 m above existing ground level)
- deviations from the following city policies:
- Floodplain and River Corridor Management Policy (2009):
i) Section 9.2: Flood management and public safety Permission to develop / obstruct the free flow of water within the 20year flood plain
ii) Section 10.5 Table 1: Framework for the assessment of proposals Permission to infill within the 50year floodplain.
- Management of Urban Stormwater Impacts Policy (2009)
i) Annexure table: 24 hour extended detention of the lyear Rl, 24 hour storm even in a greenfield development $>50000 \mathrm{~m}^{2}$. Permission to deviate from this requirement.
ii) Annexure table Up to 10-year RI peak flow reduced to pre-development level in a greenfield development $>50000 \mathrm{~m}^{2}$. Permission to deviate from this requirement.
iii) Annexure table up to $50 y e a r$ RI peak flow reduced to existing development levels in a greenfield development $>50000 \mathrm{~m}^{2}$. Permission to deviate from this requirement.
1.2.2. The applicant states that this application is the initial step in a series of land use related applications for this site, such as subdivision and departures. He states that the preliminary Development Framework, indicated as Figure lof the River Club Supplementary information, (see below) is submitted as part of the Motivation Report only, and not for approval.

1.2.3. Further, "the statutory planning application remains unchanged and after rezoning to subdivisional area, future formal submissions will be made relating to Precinct Plans, internal Subdivision pans and Site Development Plans." The application does not include submission of a Site Development Plan (SDP)
1.2.4. The applicant indicated that the site will be divided into two development precincts, with a central open space precinct (Motivation Report, Figure 62, page 181). However, this is not included in the land use management application.
1.2.5. The applicant is offering to submit a subdivision plan, phasing plan, precinct plans and site development plans in future, once this application to rezone and allocated bulk is approved (Motivation Report, Section 11.1, page 181).
1.2.6. The supplementary information is submitted in motivation of the land use rights sought, but the applicant indicates that this information is not enforceable and merely provided to illustrate future intent.
1.2.7. The Motivation Report (pg 182) includes a basic Site Development Plan which indicates proposed land uses / zonings on the site. However, this plan is not included for approval, and is indicative only of what may or may not be submitted in the future.

1.2.8. The diagram above indicates areas proposed for General Business 6 \& 7 , which zones permit heights of up to 60 m above existing ground level, and it shows areas to retain the current Open Space 3 zoning. Nevertheless, this diagram is not submitted for approval and is only indicative of what may be submitted in future applications.
1.2.9. The applicant includes a diagram indicating the proposed retaining wall heights relative to existing ground levels. However, it is not clear if this diagram is to be included for approval or not. Nevertheless, it indicates, in conjunction with other supporting information, that the applicant has a clear idea of building footprints, and would likely be able to supply a Site Development Plan if requested to do so.
1.2.10. The City is empowered to request a Site Development Plan in terms of Item 123 of the Municipal Planning By-law, for this type of development: Item 123(1) "In addition to the zoning that specifically require a site development plan, the City may require a site development plan in respect of the following development types:
(a) Shopping centres and shopping complexes
(b) Business and office park developments
(c) ...
(d) Developments in conservation areas
(e) Developments that will be sectionalised
(f) Incremental residential developments; and
(g) Major developments where there are concerns relating to urban form, heritage, traffic or spatial planning in general."
1.2.11. This proposed development falls within a proposed Heritage Protection Overlay Zone (HPOZ), a provisional protection area in terms of Section 29 of the National Heritage Resources Act (no. 25 of 1999), and within the biodiversity conservation area of the historic Liesbeek River which forms part of the broader Biodiversity Network, which the applicant wishes to infill. The proposed development includes a shopping complex, business and office park development, and constitutes a major development where there are concerns relating to urban form, heritage, traffic and spatial planning. Hence it would not have been unreasonable to expect the applicant to submit more detailed planning at the outset, or for the City to request such plan.
1.2.12. The City is empowered by the Municipal Planning By-law to request all the information relating to the preparation of a Site Development Plan, in terms of Item $123(2)$ (a) through to (t), including:
- existing bio-physical characteristics of the property;
- existing and proposed cadastral boundaries;
- the layout of the property, indicating the use of different portions thereof;
- the massing, position, use and extent of buildings;
- sketch plans and elevations of proposed structures, including information about external finishes;
- cross-sections of the site and buildings on site;
- the alignment and general specification of vehicle access, roads, parking areas, loading areas, pedestrian flow and footpaths;
- the position and extent of private, public and communal space; typical details of fencing or walls around the perimeter;
- management of stormwater and disposals of sewage and refuse:
- general landscaping proposals, including vegetation to be preserved, removed or to be planted;
- the phasing of development;
- the proposed development in relation to existing and finished ground levels, including excavation, cut and fill;
- statistical information about the extent of the proposed development, floor space allocations and parking supply;
- relationship of the proposed development to the quality, safety and amenity of the surrounding public environment;
- relationship of the proposed development to adjacent sites, especially with respect to access, overshadowing and scale;
- illustrations in a three-dimensional form depicting visual impacts of the proposed development on the site and in relation to surrounding buildings; and
- any other details as may reasonably be required by the City.
1.2.13. The supplementary information indicates, for example, the new road linkage between Salt River and Ndabeni, but the actual application in front of the decision maker at this time is only for the eastern link to provide freeway access for the benefit of the proposed development. In fact, there is no site development plan submitted for approval of a road in this application.
1.2.14. A second such example is the setbacks and height limitations shown at various places in the precinct, to respond to the heritage impact and indicators.
1.2.15. The proposal seeks to authorise the infilling of the western Liesbeek River course in exchange for de-canalising one side of the western section, but also seeks to dispose of stormwater on City property, against current stormwater Policy (Post development run-off would exceed pre-development run-off, and the water would be discharged off the private property into the surrounding rivers on City land). The Environmental Impact Assessment, in terms of Act 107 of 1998 (and its regulations), for these two aspects of the development, has not yet been finalised. This matter cannot reasonably be decided upon by the Municipal Planning Tribunal without the environmental impact assessment process having been finalised first.
1.2.16. The following extract from the motivation report for this application (Section 10.1.1 on page 179) refers to the rezoning being sought:

Application is submitted in terms of section 44(1) of the MPBL to rezone the property from Open Space 3: Special Open Space (OS3) to Subdivisional Area Overlay Zone.

The reason behind the rezoning to Subdivisional Area is to allow for a degree of flexibility with regard to the future subdivision and deemed zoning(s) on the site. For example, it will allow for different General Business sub-zones to be utilized in different portions of the site, as well as more precise determination of the environmental and open space areas, which zoning will be deemed as Open Space 3.

Preliminary deemed zonings for the site following future subdivision are General Business (Subzones 4-7) and Open Space Zoning 3.
1.2.17. The applicant is asking the City, in the motivation report, to consider allocating $150000 \mathrm{~m}^{2}$ floor area of mixed use land use rights, building heights of up to 46 metres above existing ground level, and the possibility of subdividing the site into precincts, but does not want to commit to any development framework plan or conceptual framework plan at this stage and has not submitted such spatial plans as for approval as part of the land use management application.
1.2.18. The lack of SDP/some form of plan makes even the most basic evaluation and mitigation of environmental and heritage impacts (and therefore assessment of desirability; or the ability of the site to accommodate the proposed land use) impossible to do in a meaningful way, if the applicant cannot be held to the illustrations and ideas contained in the motivating memorandum and supplementary information. Conversely, certain ideas contained in the motivation report are not the subject of a formal application process and need not be included for approval, as they cannot be considered as integral to the planning application submission. If included on a Site Development Plan, or within a Development Framework, they could have been considered as part of the overall land use management application and approval.

1.2.19. The applicant alluded to following a package of plans process, but instead of doing that, chose to pursue rezoning to Subdivisional Area Overlay Zone, meant for homogenous developments with a uniform nature and repetitive subdivisions, to release the land in future. This may be the incorrect planning mechanism to apply in the case of this development that could alternatively have followed a package of plans process, with a high level plan for the site right from the start.
1.2.20. According to the MPBL, Chpt 18, "The Subdivisional Area Overlay (SAO) Zone designates land for future subdivision with development rights by providing development directives through specific conditions as approved in terms of the MPBL. The SAO zoning confirms the principle of development and acceptance of future subdivision of land; but not the detailed layout, which will be determined when an actual application for subdivision is approved. The SAO zoning may or may not be used in conjunction with the Special Planning area mechanism." Hence, the submission of the diagrams for retaining structures on two large development footprints, uploaded to the DAMS case, are premature because without having submitted SDPs for the site, building footprints for structures are already indicated relative to the biodiversity conservation area of the historic Liesbeck River (west of the River Club), and without showing the requisite setback for an ecological buffer from the Liesbeek River.
1.2.21. Furthermore, the diagram (see below) included for the retaining structures up to 5.9 m in height, in lieu of 2 m in height, indicates development on City land, outside the private property site boundaries, for which power of attorney from the City's Property Management Branch is not uploaded to the case on DAMS, for part of the development proposals to extend onto City land, such as a roads and swales.

1.2.22. Furthermore, a trail crosses over land owned by the SA Astronomical Observatory and owned by the City on the retaining structures diagram. Proposed roads extend over City land. It would be problematic to approve such a diagram in the absence of an approved spatial development framework.

1.3 Deviations from approved City Policies and reference to draft Two Rivers Local Spatial Development Framework

1.3.1. The applicant includes reference in the River Club Supplementary Information, Section 1.2, to the Draft Two Rivers Local Spatial Development Framework as supporting the proposed River Club development. This draft LSDF is problematic and unlikely to be approved in its current form, due to it being in conflict with several approved City policies. The plans in the Draft TRLSDF are of poor quality, are unclear, and are not endorsed by the City as they disregard the existence of a high faunal sensitivity Conservation Area, which is part of the City's Biodiversity Network. A draft policy that is still out for public comment cannot be used to motivate a land use application.
1.3.2. Further, in Section 1.3 of the Supplementary Information Report, the applicant disparages the status of the Council approved Two Rivers Urban Park Contextual Framework (2003). Although not a spatial planning instrument, it is nevertheless an approved policy and has status, such as the Floodplain and River Corridor Management Policy, for which application is being made to deviate. As approved policy, the principles must be used to guide decision-makers regarding any future development within the area. Recently (January 2020) a Memorandum of Advice on the Two Rivers Urban Park Contextual Framework and Phase 1 Environmental Management Plan, 2003 and intended Local Spatial Development Framework for the Two Rivers Urban Park Area", the City's legal advisor to the Water Department advised as per section 12 of her MOA, "in the absence of formal structure plan status, the CF must be regarded as a policy or a guideline. The City is obliged to apply policy and if there an application entails a substantive departure from policy we would have to seek a council decision (there is no delegation for this)." Furthermore, "There isn't a formal process for a developer to apply for a policy deviation. It's up to City decision-makers to apply policy. If asked for a substantive policy deviation they would have to approach council for approval, citing all relevant considerations."
1.3.3. The areas of conflict / deviation from the approved Two Rivers Urban Park Contextual Framework are highlighted in section 3 of these comments, The Environmental Assessment.

1.4 Concern

1.4.1. The applicant is asking the City to consider the supplementary information provided in support of the application without binding or committing themselves to its content or submitting it for approval as a formal application.
1.4.2. The applicant is offering to submit a subdivision plan, phasing plan, precinct plans and site development plans in future, after this application to rezone has been approved. However, it is critical for the applicant to include, as part of this land use management application, a high level conceptual framework or development framework plan to provide a spatial representation of how the development will materialise, and to enable the proper evaluation of impacts on the environmental and heritage resources, by the Municipal Planning Tribunal.
1.4.3. The further requirement for a river corridor management plan (as per requirements of the City's Catchment Management Branch) must be dealt with in the current application, because the rights sought, relate directly to the storm water management impact and deviations from Policy and also relate to impacts on biodiversity within a high faunal sensitivity Conservation Area.
1.4.4. The Landscape Master Plan requested in the branch comment can form part of the high level conceptual framework or development framework plan mentioned, and should be submitted for evaluation during this current application, prior to any development rights being granted.
1.4.5. The proposals to landscape and rehabilitate the existing Liesbeek Canal should be included as part of the submission, and shown on detailed spatial plans, with elevations and cross-sections, as part of the Site Development Plan submission, otherwise the rehabilitation may not necessarily materialise if not shown on detailed spatial plans, nor indicated on a phasing plan.
1.4.6. Although not legally obliged to wait, the City needs to carefully consider the fact that there are two legislative impact assessment processes underway that still seek to understand the sensitivity of the receiving environment. At the time of writing this comment, the environmental evaluation was just released and has not been subject to scrutiny. Equally, the heritage impact report has still to serve before the competent authority. It may be advisable to wait for these processes to reach some stage of progress and certainty before recommendations are made to the Municipal Planning Tribunal.

2 HERITAGE ASSESSMENT

For reference to our previous Heritage Assessment of October 2018, please see our comments in Appendix A. These heritage comments remain valid. These additional Heritage comments are in response to the supplementary information submitted.

2.1. Purpose of the Application

2.1.1. It is proposed to redevelop the property (known as the River Club). In summary it is proposed to accommodate a mixed use development of $150000 \mathrm{~m}^{2}$ comprising retail Shops and Restaurants (retail uses), Offices, Dwelling units, a Hotel and Places of Instruction (and associated uses).
2.1.2. The proposal will entail the construction of retaining structures so that roads and habitable space are raised above the 1:100 year flood plain. The initial phase of the development proposal will see the partial construction of the Berkley Road extension, which in future phases will be further extended to provide access from Berkley Road to Malta Road/Leisbeek Parkway. Additionally, the Liesbeek Canal on the eastern boundary of the site will be rehabilitated into a river course, while the 'old' Liesbeek River Channel on the western boundary of the site will largely be filled and landscaped to accommodate a vegetated stormwater swale.
2.1.3. The intention is to consider this new information and to issue a supplementary comment, flowing from which the Land Use Management report can be completed and tabled before the Municipal Planning Tribunal (MPT).

FIGURE 1: Previously submiffed Development Framework

FIGURE 2: Currently submitted "Refined Development Framework"

2.2. Supplementary Heritage Consideration

2.2.1. Additional information provided in the Supplementary Information, that relates to our previous comment and specific heritage issues are:

- Figure 2 "Refined Development Framework" (page 9)
- 2.3 First Nations Heritage as a Design Informant (page 21)
- 2.6 Hard \& Soft Landscaping (page 47)
- 2.6.3 Ecological/Heritage Trail (page52)
2.2.2. Figure 2 "Refined Development Framework" (page 9) As per the Supplementary Information the refined development framework, as shown in the FIGURE 2 above, "Noteworthy changes from the original development framework are:"
a) The diagonal road dissecting the central 'ecological corridor' has been replaced by a road that crosses the green open space in a more orthogonal orientation, with the intention to mimic the orientation of the buildings, as well as reduce the impact on the amenity and functioning of the 'ecological corridor' space.
b) The setback of the buildings from the rehabilitated Liesbeek Canal is now a minimum of 40 metres (this setback previously ranged between 24-40 m).
c) The buildings directly adjacent to the SA Astronomical Observatory to the west have been lowered in height to reduce the impact on this historical precinct.
d) The access roads in Precinct 1 are no longer positioned on the 'outside' of the precinct adjacent to the rehabilitated Liesbeek Canal and vegetated swale. instead, there is now a central road servicing the precinct, and the buildings overlook landscaped areas providing a better interface with these areas.
e) The western half of Precinct 2 has been earmarked as the Amazon campus. Amazon is a global company that has very specific requirements for their buildings (e.g. standard floor plates, which in turn result in very specific building footprints). This campus is located next to Berkley Road extension where greater heights are appropriate, although the heights of buildings in the Amazon campus have been staggered as a means to articulate the massing.
f) The inclusion of First Nations heritage as a design informant which now includes the following:
- establishing an indigenous garden for medicinal plants used by the First Nations;
- establishing a cultural centre;
- establishing a heritage-eco trail;
- establishing an amphitheatre for use by both the First Nations and the general public;
- commemorating the history of the First Nations by: establishing a Gateway Feature inspired by symbols central to the First Nations narrative at the road crossing the ecocoridor; incorporating symbols central to the First Nations narrative in detailed design of buildings; and naming internal roads inspired by people or symbols central to the First Nations narrative;
- the implementation of these mechanisms is to be assured through an institutional arrangement which establishes within the Property Owners Association (or similar) an autonomous legal entity led by the Gorinhaiqua Cultural Council that will be responsible for the governance, planning, management, operations, maintenance and sustainability of the indigenous place-making mechanisms.

2.2.3. Furthermore, (page 25)

"A number of refinements and amendments have been made to the development proposal (listed on p21 above). All of these are, we argue improvements to what was discussed in the HIA dated 2 July 2019. Many of these changes are refinements and will, we presume, not satisfy all commentators; however, we suggest that several of the changes are significant from a 'heritage point of view'. These latter changes include, most importantly:
areducing the height of the buildings in Precinct 1 opposite the SAAO in order that their presence, already minimised by the distance is further reduced and so that Lions Head and Signal Hill can be seen from the roof of the old Royal Observatory building:

- improving the vehicular-bridge-crossing of the eco-corridor; and
- introducing the several strategies discussed for "indigenizing the site through placemaking mechanisms" as outlined on pages 8 and 21 above."
2.2.4. In the document titled "HWC Issues on River Club HIA (a component of the BAR) and Project Team Responses", several points must be noted:
- On page 3 under point 8 . "Regarding the visual impact on sense of place, it is acknowledged that although $\sim 65 \%$ of the site will be retained as open space, due to its location at the confluence of the Liesbeek River and Black River, and longterm status of the site as a green open space, the change in character may be experienced as a strong visual contrast for surrounding (urban) receptors, and the (negative) impact of a change in sense of place will be significant."
- On page 3 under point 12. "impacts on the sense of place, and historical character of the site have been assessed in the HIA and found to be significant."
2.2.5. On page 6 under point 31. "Regarding open space specifically, it should be noted that:
- The heritage specialists argue that while the development may lead to significant visual impacts, transformation of the site's character is of relatively low heritage significance."
2.2.6. Environmental Management Department believes that the site's character and the sense of place to be interlinked through the site's history, intangible as well as tangible heritage and agree with point 8 . above that the negative impact of a change in the sense of place and visual impacts will be significantly negative.
2.2.7. On page 6 under point 35 . "The HIA recommends that the heights of buildings in the portion of the site closest to the SAAO are kept lower than that of the bank of trees on the SAAO ridge (and that these buildings must include a range of building heights, variation in building form, and an avenue of trees lining the development along the edge of the riverine corridor)."
2.2.8. Although the revised proposal has reduced proposed building heights in proximity to the SAAO, Environmental Management Department still has concerns with the overall heights of the proposed development and how this will impact negatively on the cultural landscape, sense of place as well as the SAAO itself.
2.2.9. On page 9 under point 49. "the "River Club First Nations Report" (AFMAS, 2019aattached as River Club First Nations Report) was informed by:
- Primary research, including key informant interviews with various First Nations representatives for the "TRUP First Nations Report" (AFMAS Solutions, 2019);
- Key informant interviews with First Nation knowledge keepers and traditional custodians of the Goringhaiqua, Gorachouqua, Cochoqua, Griqua Royal Council and the San House of N\|\| \ddagger e to understand First Nation intangible heritage significance and indigenous "sense of place and meaning" of the River Club site; and
- Deconstruction of the Two Rivers local area cultural landscape through multilayered and multi-dimensional contextualizing to locate the indigenous narrative of the River Club within this area."
2.2.10. With specific reference to the First Nations grouping and respective parties involved, a Cape Times article, December 2019, quotes Goringhaicona Khoena Council High Commissioner Tauriq Jenkins as saying, "We as the Goringhaicona do not accept this development as, in its current form, it is an act of spiritual and heritage genocide." Notwithstanding the highly commended work on the First Nations narrative, this statement is of concern and raises the question of how inclusionary the process of participation with the First Nations has been.
2.2.11. The TRUP landscape has been identified as the site of the skirmish between D'Almeida and the Goringhaiqua in 1509. Legacy Projects established in 1994 included Khoisan heritage: outcomes of the 2015 baseline study and feedback from Dept Arts Culture were that the 'unique relationship of the Khoi-San with the environment' could be presented as a park and that the intention of the Khoi-San legacy Project "is not to create a memorial comprised of buildings and/or traditional sculpture".
2.2.12. On page 13 under point 74. "With regard to the visual impact, the VIA finds that the scale of the development will have visual impacts, and it is the location/context of the site - the surrounding built fabric and topography, visual absorption capacity, visibility, and landscape integrity - which effectively reduces such impacts to the assigned medium rating after mitigation."
2.2.13. Environmental Management Department is of the belief that the visual impact of the current proposal to be highly negative due to the scale of the proposed buildings, footprint of the development and heights of the proposed buildings. See Figures $3 \& 4$ below.

FIGURE 3: Currently submitted Visual Impact Views

FIGURE 4: Currently submitted Visual Impact Views

2.2.14. "This cultural landscape is a legacy for the whole of society and reveals aspects of our country's origins and developments as well as our evolving relationships with the natural world. The ongoing care and interpretation of these sites improves our quality of life and deepens a sense of place and identity for future generations." The Cultural Landscape Foundation.

2.2.15. The cultural landscape, of which the pre-1952 river course is an integral part, as well as the SAAO site, are of a very high level of heritage significance and the proposed development's heights, scale and density would certainly also impact negatively on these relative levels of heritage significance.
2.2.16. The impact on the level of significance of the cultural landscape will be highly negative in terms of the level of physical and visual change on the environmental/topographical/ecological and historical significance of the area and by the proposed heights, scale, and density of the current proposal. This negative impact on the significance of the heritage resources will also carry over to the SAAO site for the same reasons of the suggested heights, scale and density. Further mitigation should be in the form of reducing the proposed build heights and density.
2.2.17. Infilling of the old Liesbeek River channel and remodelling of this channel into a vegetated stormwater swale will also impact negatively on the high level of significance of the cultural landscape.
2.2.18. The old Liesbeek River channel forms an integral part of the environmental/ topographical/ ecological and historical significance and current status of the area which can clearly be seen from Figures 2 and 21 of EMD previous comment, as well as from the cover photograph of The River Club: Development Alternatives, prepared by Planning Partners dated November 2017. Removing the old Liesbeek River channel's ability to be perceived as a historical watercourse and thereby severing its role in the story line of the cultural landscape will impact negatively on the significance of that resource. This might be mitigated by the inclusion of a watercourse of sorts within the proposed 'park-like' pedestrian and cycle path 'transformed riverine corridor'.

2.3. Conclusion to the Heritage Impact Assessment:

2.3.1. Environmental Management Department is not opposed to the redevelopment of the River Club site. The heritage resources identified to be impacted on by the proposed development have varying degrees of proximity to the site and heritage levels of significance but, this Department believes that the levels of significance of, in particular, the cultural landscape and the SAAO site will still be compromised or reduced by the current proposal and that, although mitigation measures have been applied in the form of the First Nations narrative, setting back proposed buildings further from the SAAO and promoting a 'park like' eco corridor, the overall impact on the heritage resources identified, sense of place and cultural landscape is still perceived to be negative.
2.3.2. "the site functions as an important urban threshold, characterised by the openness of the area and the network of watercourses crossing it. This character sets it in contrast to the urban fabric that surrounds it, and makes, along with the extended context, a unique place within the city. Many of the buildings and uses that are already located "between the rivers" are located here precisely because of the threshold quality the area offers.

2.3.3. The proposed development does not acknowledge the unique and symbolic "threshold role" that the site plays, both in its formal layout, scale, and in the uses that are being proposed. Having to raise the site by 3 m or more to achieve an acceptable height above the flood water level further exacerbates the concern that the development would be an invasion of this significance." Cape Institute of Architects, 8 Feb 2018.
2.3.4. Environmental Management Department agrees with the development consultants that the visual impact is pronounced but is not supportive of the visual impact conclusion which describes the proposal as being "not inconsistent with a cityscape". The cityscape of Cape Town as depicted in the before and after figures clearly shows a significant and pronounced change and impact from a visual perspective. This impact can be mitigated by reducing bulk, development footprint and building heights.
2.3.5. Of relevance within the Environmental Strategy for the City of Cape Town (Policy 46612) which was approved by Council on 24 August 2017 (C05/08/17) are the following:
2.3.6. Directive points 6.11.1 through 6.11 .4 are not fully complied with by the proposal in that the full significance of the unique sense of place and cultural landscape is not acknowledged sufficiently by the current development proposal which impacts overly negatively on these values. Mitigation is by means of reconfiguring the Liesbeek Canal and landscaping green open areas but the currently suggested bulk and heights of the proposed structures and resultant built forms should be reduced further in order to present a more sensitive alignment with the significance of the cultural landscape and sense of place.
2.3.7. The social issues revolving around cultural appropriation and social impact have not been expounded on sufficiently, the First Nations narrative appears to not be totally inclusive of all relative groups. Inclusionary housing from a socio-economic perspective relating to historic communities that may be impacted on, requires investigation. This should not only address accessibility but include factors revolving around inclusionary housing. The idea of inclusionary housing needs to be elaborated on further relative to its historic context? The typologies of homes are very important to look at critically. Can a micro apartment or one-bedroomed apartment such as may be included in this development, accommodate a family within this area between Woodstock and Maitland, areas characterised by the so-called working class who may function within extended family structures? Will the market forces of such a development, unintentionally further exclude and drive out working class communities in historically working class neighbourhoods, close to opportunity and the City?
2.3.8. The current proposed development does not conserve sufficiently the historical and cultural value and significance of the cultural landscape of the area. The importance of historic and existing spatial context is not adequately recognised in the proposed development in its current form which could be mitigated by a further reduction in bulk and heights.
2.3.9. Furthermore, the No-go option and development within the parameters of the current Open Space Zone have not been explored adequately other than for reasons of economic viability to the developer. These alternatives require further investigation in order to establish if the ensuing negative impacts would be less than those perceived from the current proposal.
2.3.10. The application in its current form is not supported, as it does not align with current approved City Policy and Strategies in terms of the City's Tall Building Policy, Environmental Strategy and Cultural Heritage Strategy.
2.3.11. Environmental Management further do not support the evaluation of this application without a high level precinct or concept plan.

3 ENVIRONMENTAL ASSESSMENT

The environmental assessment comprises:

- Assessment of the application in terms of approved City policies, spatial plans, and principles in legislation
- Assessment of the environmental impacts of the development application and motivation report, Contextual and site analysis
- Further requirements

3.1 Environmental Assessment of the Application in terms of approved City policies, spatial plans, and principles in legislation

The following applications are submitted for approval:
3.1.1. Deviation from the Table Bay District Plan to permit urban development on land designated as "open space", "core 2 " and "buffer 1 ", in accordance with section 16 of the MPBL.
3.1.1.1. The proposed deviation from the Table Bay District Plan regarding development within the areas identified as Core 2, Open Space and Buffer 1 is a concern, as these were identified for open space and conservation purposes. These areas are located within the 1:10year floodline at the confluence of two rivers, and containing valuable wetlands and fish habitat, currently sustaining the endangered Western Leopard Toad breeding areas, plus the indigenous Galaxia fish, which fish provide food for several bird species in the area, as well as the Cape clawless otter.
3.1.1.2. Despite the applicant's assertion on pg178 of their Motivation Report, that the Table Bay District Plan must concur with the MSDF at a higher level, it must be noted that the recently approved MSDF does not comply with the requirements of the Western Cape Land Use Planning Ordinance (WCLUPA) whereby structuring elements in municipal spatial development frameworks must include the identification of ecological corridors and open space systems. Such ecological comidors and open space systems are correctly identified at the District Plan level, in compliance with the requirements of WCLUPA for spatial plans. It is hoped that the MuniSDF will be corrected to accommodate this omission in the next iteration. The City is also currently working on a Green Infrastructure Plan (which includes river corridors and open space systems) which is intended to feature spatially in the next MuniSDF.

3.1.2. Rezoning from Open Space Zoning 3: Special Open Space (OS3) to Subdivisional Area Overlay Zone (SAO)

3.1.2.1. Although intensification and densification is promoted in the City's spatial planning, this site is poorly services and not located in any future catalytic growth and investment area. It does not align with the City's TOD Strategy or initiatives to revitalise and invest in Belville's declining CBD.

This land use application seeks to amend policy, solicit massive bulk infrastructure investment from public coffers and substantially change a sensitive receiving environment, while there are many other areas in decline that urgently require investment.

There is no convincing desirability motivation that can succeed when compared to alternatives. This development on this site is simply not desirable and has too many uncertainties to allow for a rezoning of this nature.
3.1.3. Approval to construct retaining structures, in terms of Section 42(i) of the MPBL and in accordance with item 126 of the DMS, to be constructed to a height of more than the permitfed 2.0 m above the existing level of the ground (to heights of 5.7 m and 5.9 m above existing ground level)
3.1.3.1. Environmental Management Department has concerns regarding the proposed retaining structures extending up to 5.9 m above the existing ground level. This is not an appropriate development in the floodplain and riverine open space context where the linear open space is a major structuring element linking Table Bay to False Bay, and providing visual and recreational amenity to all the high density developments adjacent to it. This long term impact is complex and the risk of a decision around this based on localised modelling is a serious risk for a City that is already looking at spending billions to remedy poor planning practices of the past, where the complexity of environmentally sensitive receiving environments was ignored.
3.1.4. Deviations from the following cify policies:

Floodplain and River Corridor Management Policy (2009):
i) Section 9.2: Flood management and public safety

Permission to develop / obstruct the free flow of water within the $20 y e a r$ flood plain
3.1.4.1. Environmental Management Department does not support the proposed deviation from this policy to develop within the 20year floodplain. To be more accurate, the development is within the 1:10year floodplain, according to the City Map Viewer's floodlines, and based on local knowledge of flooding at the River Club.

3.1.4.2. Floodlines showing the River Club is located within the loyear floodline, but over the last loyears it has flooded more than once.
3.1.4.3. Page 7 of the Floodplain and River Corridor Management policy states that The permissible extent and nature of land use, development or activities within floodplains must be subject to stringent evaluation and control in the interests of public safety. In particular, obstruction to the free flow of water within the 20 -year floodline area shall not be permitted. In the case of the River Club, the obstruction to the free flow of water is actually within the 10 -year floodline, although there is little difference between the 10 and $100 y$ ear floodlines in this area.
3.1.4.4. However, between the 50 and 100 -year floodlines, some developments or activities may be permitted, subject to such conditions as the City may in its discretion impose, while developments with particular evacuation or emergency response issues and high risk developments will only be permitted above the 100 year floodline (refer to Table 1).
3.1.4.5. At the River Club, there have already been instances of trying to evacuate the area during high rainfall flooding events, and some people were unable to get their cars out of the area. Furthermore, the water levels reached 1 m in height (hip height) within half an hour and it was difficult to walk in the water we have heard from people who were at the River Club during a flood event.

The short term financial gain from development and transient tenants cannot be allowed to out-weight the potential long term risk to the City and surrounding areas.
ii) Section 10.5 Table 1: Framework for the assessment of proposals Permission to infill within the $50 y e a r$ floodplain.
3.1.4.6. Environmental Management Department does not support filling in floodplains in general, as river floodplains are important ecological buffers to river corridors that sustain fauna and flora, and they provide important green lungs, carbon sinks, visual amenities, cultural landscapes, and recreation areas that enhance the quality of life for the City's residents. The infilling is not equally offset by the proposed rehabilitation of the Liesbeek Canal.
3.1.4.7. The Floodplain and River Corridor Management Policy acknowledges that within the confines of the Cape Town Metropolitan Area, the pressure to develop is significant and requires careful management to avoid developing in high flood risk areas, to protect the environmental integrity of aquatic resources and to ensure that permitted development enhances the aesthetics and character of the adjacent watercourses / wetlands. In order to achieve this, a new approach is required where engineering, environmental and socio-economic elements are assessed and integrated as the vision for a particular watercourse / wetland system. The River Club development proposal is not an example of such an integrated vision that achieves the above mentioned objectives.
3.1.4.8. The application to Land Use Management should also include to fill in a river, within the river bed. The historic Liesbeek River, according to the drawings in the Motivation Report, is proposed to be infilled, in addition to filling in the floodplain. Only the floodplain infilling is applied for in the Application.
3.1.4.9. Further, application should also be made to Land Use Management to deviate from the principle of retaining an ecological buffer which should be between 30 -40 m from the historic Liesbeek River, and should also be applied for from the canalised section of the river, and from the linear wetland edges on the eastern edge of the River Club site on its north-eastern edge, near Raapenberg Bird Sanctuary.
3.1.4.10. The Floodplain and River Corridor Management Policy, Section 9.3 Ecological Buffers, provides as follows:
3.1.4.11. Watercourses and wetlands with their adjacent riparian areas and associated fauna and flora must be protected or "buffered" from the impacts of adjacent development or activity. Offen referred to as ecological buffers, these protected zones / setbacks provide continuous corridors and habitat for flora and fauna. Buffers also provide other benefits such as water quality improvement of point or diffuse sources of pollution, stream bank and erosion protection from the hydrological impacts associated with hardened catchments in urban areas, and space for implementation of appropriate water sensitive urban design elements. In addition, buffer areas can provide socio-economic benefits in the form public open space, opportunities for recreation and environmental education / awareness, and enhancement of waterway, visual and property values. In instances where watercourses have been canalized, buffers are still required to aid maintenance and, in some instances, to allow adequate space for possible future restoration activities.
3.1.4.12. In the case of the River Club development, Environmental Management Department does not support having no ecological buffer to the historic Liesbeek River, filling it in, and filling in the 1:10year floodplain (although application is only made to fill in the 1:50year floodplain.
3.1.4.13. Filling in the river also compromises its potential for groundwater recharge, and recharge of the Cape Flats aquifer, which is not in line with the climate resilience principles for water security. Filling in a major waterbody is also not in line with best practice water sensitive spatial planning principles.
3.1.4.14. Environmental Management Department would wish to see the cumulative impact should other properties within the floodplain also wish to fill in the floodplain.
3.1.4.15. Hard-surfacing and built footprints within the floodplain should be kept to a minimum so as to allow water percolation within the floodplain area. The purpose of floodplain management is to protect human life and health. minimize property damage, to encourage appropriate construction practices to minimize future damage, to protect individuals from unwittingly buying land subject to flood hazards, and to protect water supply, sanitary sewage disposal, and natural drainage.
3.1.4.16. The prevention of unwise development in areas subject to flooding will reduce financial burdens to the community and to the Government, and will prevent future displacement and suffering of its residents. Hence, the precautionary principle should be applied to discourage development within the floodplain, and infilling of the floodplain.
3.1.4.17. Alternative development designs, such as on stilts, above the 1:100year floodline could be considered, which would likely be smaller in scale and more in keeping with the sense of place and character of the riverine environment.

Management of Urban Stormwater Impacts Policy (2009)
i) Annexure table: 24 hour extended detention of the 1 year RI, 24 hour storm even in a greenfield development $>50000 \mathrm{~m}^{2}$. Permission to deviate from this requirement.
ii) Annexure table Up to 10-year RI peak flow reduced to pre-development level in a greenfield development $>50000 \mathrm{~m}^{2}$. Permission to deviate from this requirement.
iii) Annexure table up to 50 year RI peak flow reduced to existing development levels in a greenfield development $>50000 \mathrm{~m}^{2}$. Permission to deviate from this requirement.
3.1.4.18. Deviation from the Urban Stormwater Impacts Policy is not advisable.
3.1.4.19. Page 5 of the Urban Stormwater Impacts Policy notes the deleterious impacts of urbanisation on receiving waters, that is rivers, streams, wetlands, groundwater and coastal waters, are a worldwide phenomenon. Such impacts include:

- Declining water quality;
- Diminishing groundwater recharge and quality;
- Degradation of stream channels;
- Increased overbank flooding;
- Floodplain expansion;
- Loss of ecosystem integrity and function;
- Loss of biodiversity.
3.1.4.20. One of the functions of this policy, in addition to safeguarding human health, is to protect natural aquatic environments, and improve and maintain recreational water quality. The proposed River Club development is also deviating from this objective.
3.1.4.21. A fundamental principle of this policy is that the person or body, whether private enterprise or an organ of state, who creates a development should do so responsibly and should ensure that such development does not adversely impact on present and future communities and on natural ecosystems. In the case of the River Club development, it is acknowledged that there will be some likely increase in flooding and potentially some homes will be flooded slightly more than before. This is a deviation from the policy.
3.1.4.22. In order to reduce impacts of urban stormwater systems on receiving waters, all stormwater management systems shall be planned and designed in accordance with best practice criteria and guidelines laid down by Council, to support Water Sensitive Urban Design principles and the following specific sustainable urban drainage system objectives:
- Improve quality of stormwater runoff;
- Control quantity and rate of stormwater runoff;
- Encourage natural groundwater recharge.
3.1.4.23. The proposed River Club development is not designed so as to support Water Sensitive Urban Design principles, and does not achieve the sustainable urban drainage system objectives listed above. Filling in a river corridor is the most inappropriate course of action in this regard. This also constitutes a deviation from the policy.
3.1.4.24. The planning process of the City identified the river course for protection in previous iterations of the Municipal Spatial Development Framework, and within the latest Table Bay District Plan (2012), as required by WCLUPA. Sustainable use of water resources should consider water as an asset and within the context of the total urban water cycle. Stormwater drainage, nutrient management, WSUD, protection of water resources, water efficiency, recycling and re-use thus must form elements of holistic and integrated planning for the City.
3.1.4.25. The proposed River Club development is not an example of best management practices promoting urban biodiversity, and enhancing the amenity and aesthetics of the River Club site and its surrounds.
3.1.4.26. Identification of other City policies from which the proposed development deviates:
Specific sections of these policies need to be referenced. This will take further work.
- Climate Change Policy: the City's Climate Change Policy promotes the protection, maintenance, rehabilitation and restoration of natural systems and resources. Infilling a river and developing within the floodplain is not consistent with the stated objectives of the Climate Change Policy.
- The Environmental Strategy for the City of Cape Town (Policy No:46612) maintains that in order to realise the City's vision, it needs to put measures in place to ensure that "Cape Town's rivers and wetlands are well managed and where possible planned as cohesive corridors that are well-used recreational spaces and community assets that provide ongoing ecological service". Taking this into account, this Department questions whether the approval of this development proposal as is, will ensure that these principles are met as the development proposal will not ensure ecological diversity of this natural open space is preserved, nor will it ensure social inclusivity where all citizens will have reasonable access to this ecologically diverse natural open space. The development proposed would also not promote the protection of river corridors and mountain-to-sea linkages which provide habitat protection for recreational opportunities while ensuring visual and physical access to the water's edge.
- The Two Rivers Urban Park Contextual Framework (2003): As demonstrated above, this development proposal completely deviates from the vision of the Two Rivers Urban Park Contextual Framework and Phase 1 Environmental Management Plan (2003) ..." To rehabilitate, protect, secure and enhance the intrinsic ecological qualities of this area, to conserve the unique cultural and landscape, to encourage environmental education, to maximise opportunities for all people and to promote sustainable development". The Two Rivers Urban Park Contextual Framework and Phase 1 Environmental Management Plan (2003) can be used a yardstick against which to measure and future development proposals. However, it is evident that consideration of the provisions of this policy has been minimal.
- In terms of the future development and management of this area (TRUP,2003), development proposals for this area should not result in any significant ecological impacts. This policy details that development within this area should be kept outside the 50 -year floodplain provision. The development proposal is a direct deviation from the TRUP Contextual Framework (2003). Furthermore, no infilling of the floodplain should be considered until more detailed hydrological data becomes available. These provisions in the policy has been given very little regard.
3.1.4.27. It must be noted that the proposed development is deviating from approved spatial plans and policy, in addition to those specifically listed in the application.

3.2 Assessment of the environmental impacts of the development application and

 motivation report, Contextual and site analysis3.2.1. The applicant's stated vision for the site is to create a lasting legacy, create job opportunities, commercial enterprises and a space for people of all cultures to live and work and which is open to the community for safe, recreational activities through the creation of a financially sustainable development. However, according to the artist's impression included in the Motivation Report, a large scale, high rise, commercial development is proposed, within the low-lying
 floodplain at the convergence of two significant rivers in Cape Town, and the historic Liesbeek River faunal habitat is replaced with a vegetated swale, while new freeways are planned over significant riverine landscapes, rather than maximising the opportunities of a riverine park with buildings in it.
3.2.2. Our point of departure is that this site should be developed in a way that provides for the work, play, live concept as envisaged by the applicant while at the same time, enhances the site's opportunities that are currently underutilised for both recreational benefit alongside rivers and swales within the River Club site (rather than in the Liesbeek River itself) and to enhance the ecology of the site and adjacent rivers and canal. Towards this goal we envisage the creation of a park-like environment with buildings in it, rather than the creation of a building complex and the provision of remaining park /open spaces around it. i.e. the creation of an urban village not an office park. Given that the entire site (apart from a small portion in the north-eastern corner) falls within a floodplain (within the High Hazard Zone and the 1:20 and 1:10year flood line), is a strategic green open space linkage and a sensitive cultural landscape with a unique sense of place, and that the existing Special Open Space zoning (OS3) only permits very limited but suitable development rights, we suggest that this point of departure be pursued as guidance for future development.
3.2.3. Environmental Management Department is of the opinion that these abovementioned urban development opportunities should only be supported where a good balance is reached between the extra development rights given and the benefits accrued to the total receiving environment w.r.t ecology, heritage and social benefits (housing and recreation). Taking this further, therefore, while we support the benefits w.r.t upgrading and landscaping of the open spaces, rehabilitation and/or remediation aimed at improving terrestrial and aquatic (river and wetland) habitat quality, the improvement and maintenance of ecosystem resilience and sustainability and the provision of publicly accessible formalised recreational areas, we are concerned that the scale, bulk and footprints proposed for the building component of the development are excessive within the receiving context when considering the fact that the site is zoned Special Open Space and is entirely within a floodplain.
3.2.4. Furthermore, we are opposed to the infilling of the prime biodiversity high sensitivity faunal conservation area located within the historic Liesbeek River, and therefore reject this component of the proposal. A reduced footprint of the development, set back 30-40m from the Liesbeek River, to enable an ecological riverine buffer for faunal habitat and for recreational and visual amenity, should be investigated.
3.2.5. Freshwater Ecology: The interface between the site and the Liesbeek Canal, Liesbeek River and the Black River and the confluence area of these two rivers has ecological value and provides opportunities to rehabilitate and enhance these ecological areas and incorporate some new swales for Western Leopard Toads, in the east-west corridor of the development.
3.2.6. Botanical value: The majority of the River Club site offers no botanical value but nevertheless provides habitat to breeding Western Leopard Toads, and also provides some wetland habitat on its north-eastern river embankment for a length of roughly 80 m . The bank of the Liesbeek River along the western edge of the River Club provides valuable bird and frog habitat, for waterfowl and fish-dependent bird species, such as the kingfishers.
3.2.7. Traffic: The construction of Berkley Road extension to Malta Road bridge, is being promoted as essential in the motivation report. However, the applicant is only intending to build the link from their development to Ndabeni at this point to provide freeway access to the M5 for the development. The supplementary information incorrectly shows the Malta Road link. There is no commitment to build this section.
3.2.8. Context of the River Club within the Two Rivers Urban Parks The site is located within the larger Two Rivers Urban Park (TRUP), as a Precinct within the broader 300ha TRUP study area and this context must inform the spatial and environmental context w.r.t the sites' proposed uses and intensity and scale of these uses, use of infrastructure. transport and parking etc.
3.2.8. Discussion on environmental authorisation process: As part of the Environmental Authorisation process, the River Club Consultants (using the Specialised Reports) prepared a Draft Environmental Scoping Report (2017) and after public participation prepared a Scoping Report, as part of a full EIA process. The NEMA Regulations were subsequently amended in April 2017 and the activities proposed no longer trigger the need for a full EIA, but rather a BAR (Basic Assessment Report). A BAR has been drafted by SRK and has recently been advertised for comments from Interested and Affected Parties, due 14 February 2020, where after a Final BAR will be available for further comment, and this BAR together with any additional comments will be submitted to DEADP. The BAR includes the HIA which HWC is required to comment on (which will be addressed at their meeting of 28 January 2020). SRK has not received comment on the revised HIA and Supplementary First Nations Report from HWC yet. Without finality on the heritage indicators and environmental constraints and opportunities, it is premature to consider the Land Use application.
3.2.9. The City needs to take cognisance of the findings and recommendations on the environmental and heritage impact process that seeks to understand the sensitivity of the receiving environment, prior to making recommendations for this land use application, with insufficient information available.

3.2.10. Impacts on the Receiving Environment

3.2.10.1. Botanical significance: The River Club site is highly disturbed with no indigenous terrestrial vegetation, being located on old fill material and there are no areas of floral importance. The proposed development at this site would be highly unlikely to impact negatively on the dryland renosterveld vegetation at the adjacent SAAO site, including the Critically Endangered Moraea aristata populations. The overall impact of the proposed development to indigenous flora is accepted as negligible. We suggest mitigation measures for rehabilitation of terrestrial renosterveld habitat on the site (including along Berkeley Road extension).
3.2.11.2. Raapenberg wetlands and other ponds: The Raapenberg Bird Sanctuary wetlands (mostly adjacent to the site - refer figure 1) host a mosaic of wetland plant communities and are important from an avifaunal perspective, supporting waterfowl. They providing breeding habitat to the endangered Western Leopard Toad (WLT). The maintenance of this habitat must be carefully maintained i.t.o of seasonal flows, inundation patterns, salinity and water quality. The wetlands are highly sensitive to the following: increased flood velocity, frequency, duration and magnitude; drainage of water from the wetlands; diversion of water into the wetland; removal of existing berms or structures.

Figure 1: Raapenberg wetlands and associated bonding areas

- A number of seasonally to perennially inundated ponds have been created on the golf course. These artificial water features may provide suitable breeding sites for western Leopard Toads (WLT) and other amphibians, but are easily replaceable habitats, and of low current habitat quality. Nevertheless, the principle of providing continued WLT breeding sites on the River Club site is expected.
- Despite the level of infilling that would be associated with development of the site, the Raapenberg wetlands have been shown to be unlikely to be impacted by changes in flood height, frequency or duration, according to the Motivation Report. Nevertheless, given that the flood waters would no longer be able to spread out across the existing floodplain, but would be 'channelled in a more confined area, it is possible that the velocity of floods, and their magnitude, may be increased. This should be further investigated.
3.2.11.3. The natural Liesbeek River course / channel on the west: (natural earth-lined), which lies on land owned by the City of Cape Town between Liesbeek Parkway and the

River Club boundary. This section of the Liesbeek Rivercourse channel is largely disconnected from the Liesbeek River above due to an engineered diversion of most of its flow into the canal, and it now functions as a permanent backwater waterbody, receiving additional fresher water during rainfall events as the Observatory catchment stormwater discharges into it, and as flooding of the Liesbeek River overtops the road flowing into the historic river course in big rainfall events. Owing to its depth, it is a permanent waterbody. Its water depth is deeper than the Liesbeek Canal on the eastern side during low-flow days. It provides habitat and breeding areas to important bird species to the endangered Western leopard toads.
3.2.11.4. The historic Liesbeek River, as it skirts the River Club Site on the west, remains on the same alignment as it was, dating back to the 1800s. Historic aerial photographs

Figure 2: Liesbeek Natural Channel attest to this. The historic Liesbeek River is an important fish river and supports an abundance of bird life. The adverse water quality impacts from urban and suburban run-off from the Observatory catchment, changes in natural flow regime with the introduction of the canal, loss of some indigenous vegetation and invasion of the river channel by invasive alien plants, provide opportunities for improvement in the management and rehabilitation of the Liesbeek River (it's flows, water quality and habitat). The historic Liesbeek River and its vegetated margins are used by several species of waterfowl, particularly the Red knobbed coot, as breeding grounds for their young. They build floating nests on the river, safe from predators such as cats, dogs and humans. This section of the historic Liesbeek River is also home to Pied Kingfishers, Malachite Kingfishers and Giant Kingfishers. Endemic Cape Galaxia fish occur in this stretch of the river. Fisheating birds seen catching fish in this particular area, include cormorants, reed cormorants, the snake bird, and herons. Further, the river provides suitable habitat for the Cape Clawless Otter which also eats fish. The steep embankments are important for the Kingfishers, and possibly for ofters' holts (lairs / dens).
3.2.11.5. The Liesbeek River also contains some indigenous reed species typical of wetlands, such as Typha capensis and Phragmites australis, along the banks of the river. These provide linear wetlands and valuable habitat to birds and frogs along the edges of the river. It is for these reasons, that the historic Liesbeek River, as part of the broader Two Rivers Urban Park, has been identified as a Biodiversity Conservation Area. The City has entered into an agreement with CapeNature to ensure the long-term sustainable management of the rivers and wetlands of the Two Rivers Urban Park.

3.2.11.6. The Environmental Management Department does not support the infilling and landscaping the Liesbeek River. This loss is considered ecologically unacceptable notwithstanding the substantial canal rehabilitation proposed on the eastern edge of the River Club, and the proposed development of vegetated swales in landscaped terrestrial areas for use by the western leopard toads in their nonbreeding season (and possibly breeding season habitat). The Department does not consider the canal rehabilitation as an acceptable biodiversity offset for the loss of a well-functioning natural ecosystem. The canal rehabilitation is an obvious upgrade that should be implemented for many canalised rivers in the City to enhance their ecological functioning, water percolation and aquifer recharge potential, but is not a substitute for filling in this part of the river. Filling in the historic Liesbeek River, with its numerous fish, bird and frog populations, would have significant high negative biodiversity / ecological impacts and would compromise the functionality of the Raapenberg Wefland, and hence the overall functioning of the TRUP Conservation Area, according to Dr Charmaine Oxtoby, the City's Biodiversity Specialist.
3.2.11.7. Measures should be developed for removing litter from the Observatory catchment stormwater discharging into the natural Liesbeek River channel, and for water polishing, to be implemented in the historic Liesbeek River, in consultation with the City's Biodiversity Management Branch, and Stormwater and Catchment Management Branch. It is recommended that a 30 m setback be applied to any development footprints along the edge of the historic Liesbeek River, in order to provide a vegetated open space area which will have both amenity and stormwater polishing functions.

Mitigation measures (gabions and barriers) to discourage western leopard toad passage into the development should be implemented, except where it is reasonable for toads to cross the east-west coridor from the historic Liesbeek River breeding area to the Raapenberg Bird Sanctuary. These proposals need to be shown spatially on plans, and included in Construction \& Operational River Corridor and Wetland Habitat Environmental Management Plans. It should be noted that the rationale for an east west WLT corridor was to enable movement from their breeding area within the Liesbeek River to the Raapenberg Wetlands. Removal of the Liesbeek River course would negate the need for any such movement corridor. Hence we do not support infilling the WLT breeding site in the historic Liesbeek River.
3.2.11.8. A pedestrian route with bird-watching opportunities within the 30 m setback vegetated buffer to the historic Liesbeek River on the side of the Liesbeek River.
3.2.11.9. Environmental Management Department does not support the proposed widening of the Liesbeek Parkway road into the historic Liesbeek River area due to the loss of the high faunal sensitivity Conservation Area that would occur within the river itself.
3.2.11.10. The proposed infilling of the Liesbeek River as indicated in the Motivation Report, is not supported by the Environmental Management Department, because it is not consistent with Water Sensitive Spatial planning and urban design principles; Further filling in a natural river course is not consistent with Climate change resilience principles, nor the biodiversity strategy - to destroy a high faunal sensitivity conservation area by infilling a WLT breeding area.
3.2.11.11. In future land use applications, provide details of the East-West Corridor planting for WLT habitat versus recreational use, and First Nation Parameters.
3.2.11.12. The Liesbeek Canal on the east: between the river club and South African Astronomical Observatory, separating the site along its south eastern boundary from the Raapenberg wetlands:

The Liesbeek Canal also constitutes part of the above-mentioned Conservation Area and provides an important link from the historic Liesbeek River above,
 to the linear wetland

Figure 3: Liesbeek canal areas lining the eastern side of the River Club site, and to the Raapenberg Bird Sanctuary. See illustration of Conservation Areas in green in the diagram below. The canal is not optimal as a riverine habitat in its current form. It is not canalised for the full length of the River Club site, and has a natural wetland edge along roughly 80 m of the length of the site.

This linear wetland area of the River Club site would be sensitive to any construction impacts and any future development impacts, particularly where it abuts the Raapenberg Bird Sanctuary.
3.2.11.13. The Department recommends a setback of 30 m from the edge of the eastern Liesbeek River, to enable a viable ecological buffer, in line with the City's Floodplain and River Corridor Management Policy, particularly where the river becomes a natural wetland embankment, opposite the Raapenberg Bird Sanctuary.

3.2.11.14. Environmental Management Department supports the intention to create a largely unlined (except for the right hand river bank) river channel to recreate the natural river corridor (where this is not already in existence along the eastern edge of the River Club site). This river should have a minimum building setback space of 30 m to allow for natural flooding and riverine functions. This includes the removal of the existing left hand (western) wall of the Liesbeek Canal and the removal of its floor and the use of stepped gabion baskets to stabilise the right hand canal wall next to the SAAO. Sufficient space must be provided for a vegetated buffer with appropriate low-growing vegetation and trees, plus retention of the existing wetlands where these are preferable.
3.2.11.15. Environmental Management Department supports the creation of a cycling / pedestrian pathway alongside the river wall with a lawned buffer at least 15 m wide that serves as a recreational space to accommodate social activities uses such as playing and picnicking. A second pedestrian pathway / cycle lane on the other side of this recreational space is also supported.
3.2.11.16. Western Leopard Toad (WLT): The only known WLT breeding sites in the region of the River Club are on the River Club site itself, according a member of the WLT Conservation Committee, within the historic course of the Liesbeek River, and within the wetlands of the Raapenberg Wetlands and about 1.5 km southeast in the Oude Molen area. The WLT represents the most significant faunal concern in respect of the proposed River Club development.
3.2.11.17. The conservation and management of the Raapenberg Wetlands, and the historic Liesbeek River course, plus the allocation of certain River Club open space areas for WLT breeding habitat, is of outmost importance. These areas must provide shelter and food. A natural habitat must be available within at least a 2 km radius of the breeding habitat to sustain WLT individuals for the non-breeding period (breeding is between July and October). Environmental Management Department supports the creation of a high quality terrestrial habitat (swale area) on the River Club property only, in the east-west open space corridor, providing safe passage for the movement of WLTs between the historic Liesbeek River to the linear wetlands on the eastern Liesbeek River banks of the River Club, and to the Raapenberg wetlands. However, the infilling of WLT breeding areas such as the Liesbeek River, is not supported. WLT Breeding areas on the River Club site itself can be offset by the rehabilitation of the eastern Liesbeek River canal.
3.2.11.18. Such swale area (in the east west corridor area of the River Club property) must have sufficient ponding areas which retain water into the summer to support the WLT breeding grounds. There should be a minimum of two such ponds with diameters of minimum of 10 m . They should be excavated to lie within the summer water table level or alternatively be lined to retain water, and should be landscaped with gently sloped sides (1:5 or less steep) and planted with appropriate (i.e. to provide cover and safe movement of WLT) indigenous wetland vegetation that is connected via planted landscaped swathes to the main east west eco corridor. These banks will also provide nesting areas for bank burrowing birds.
3.2.11.19. Note these ponds might alternatively be adapted to tie in with the proposed stormwater attenuation ponds.
3.2.11.20. Environmental Management Department supports the development of an ecocorridor to allow for connectivity east-west across the site from the Raapenberg wetlands east of the River Club site, to the WLT breeding areas of the natural western Liesbeek River channel (west of the River Club). This will allow for movement of wetland fauna - in particular western leopard toads. This ecocorridor should be a minimum width of 100 m wide (varying in width). If there is to be a road traversing the east west bio-corridor, this must be planned to allow for movement of the WLT, and potentially the otters, below the grade of the road. This space is to remain undeveloped and will allow for flood attenuation during periods of high rainfall, as well as provide visual amenity as a landscaped public space on the site.
3.2.11.21. Environmental Management Department support the creation of additional green open buffer areas along the northern and southern site boundaries. These terrestrial areas should be a minimum of 10 m wide and should be rehabilitated to include patches of renosterveld, by importing soils from disturbed renosterveld sites elsewhere. These planted areas must be linked to create a continuous network of open space / corridor linking to the east-west bio corridor.

This area currently forms a buffer to the existing wetlands north of the River Club site which line the northern extent of the natural Liesbeek River, as it rounds the northern extent of the 'island.' This northern area is also home to various other birds, not necessarily wetland species only, including seed-eating species, such as cape canaries, and also the Cape Spurfowl / Francolin.
3.2.11.22. Recreational and other pathways throughout this swale and open space network must be separated from the ecological spaces so to provide safe WLT habitat. Grassed areas should be limited in this part of the site, which should aim to maximise quality toad habitat. Bird habitat should also be addressed.
3.2.11.23. Toad exclusion barriers must be erected to prevent toad access to high-risk zones such as the roads and the raised platform.
3.2.11.24. Environmental Management Department support the Provision for at least two culverts under Berkley Road extension to allow for faunal passage of a range of fauna into the presently undeveloped open space to the north, between the natural Liesbeek River channel and Berkley Road.
3.2.11.25. All roads and the development platform abutting ecological corridors / rehabilitated areas must be designed to prevent accessibility by WLTs (to prevent road kills).
3.2.11.26. The stormwater system must allow for the creation of WLT breeding ponds.
3.2.11.27. Artificial shelters including rocks and logs could also be included to improve WLT habitat.
3.2.11.28. Supply of adequate Open Space:
3.2.11.29. Consideration must be given to the site's role in the larger open space and river system and the need for quality future open spaces given the expected increase in population into the area. The City of Cape Town's population is expected to expand rapidly over the next 5 years, growing from 4055580 people in 2018 to 4 232276 in 2023 (Cape Town Socio Economic Profile, Western Cape Provincial Government, 26 January 2018).
3.2.11.30. Also noteworthy is that for the period 2016 to 2021 , the Western Cape is estimated to have an inflow of migrants totalling 311004 (second highest in the country). The City anticipates densification within the Voortrekker Road Corridor area and the CBD. As such, the need for public open space will be even greater. Is a rezoning from open space 3 is in the best interest of the City and the broader public? The City first and foremost needs to make a call on the role of the site in a future, denser City. Options to develop and upgrade the site for uses other than open space exist within the ambit of the Byiaw such as land uses permitted with consent.
3.2.11.31. The River Club site should be seen as a future public park destination within the City's open space network. This future Park should allow for access for the general public to enhanced recreation and biodiversity areas.
3.2.11.32. Whilst the site is greatly transformed and currently offers little ecological value, the potential to rehabilitate the river corridor's ecology and create meaningful open spaces and recreational areas as breathing space for this future increase of people in the larger TRUP area and beyond, must not be undervalued. Opportunities for a substantive park in the City are limited and if this area is rezoned and development allowed across the entire site, a rare opportunity will be lost. The rationale for utilising the full site for urban development must therefore be queried. One cannot ignore provisions of the Table Bay District Plan (2012) where the role of this site for open space and buffers is acknowledged. The cumulative loss of POS in the wider context of TRUP must be addressed and quantified. The opportunity loss of POS for the broader population must be addressed.
3.2.11.33. Water bodies, rivers and canals, rehabilitated open spaces and buffers need to be accommodated in the open space web for the site, and sufficient setbacks from hard surfacing and buildings to these areas are required. Detail of areas of soft and hard landscaping and built upon needs to be shown (as referred to by Urban Design Branch). The interface of development with these areas and the opportunities that arise from these spaces need to be carefully spelled out.
3.2.11.34. It is stated that 46 percent of the site is earmarked for POS. It is important that the POS reads as green / soft open space for recreational and ecological processes. If the site is to be filled to 7 m amsl with parking below at existing ground level how will the green landscaping and tree planting be implemented (as shown on the lllustrative Landscape Master Plan "tree planting"?). Some initial concepts for greening and landscaping and how the open spaces will be operated and maintained should be outlined.

Fgure 4: Mustrave Landrcape Master Plon as inciuaed in supporing documentation
3.2.11.35. A better balance between the natural environment and the built form itself also needs to be shown (i.e. how to enhance and integrate the green web throughout the two precinct themselves as a structuring element).
3.2.11.36. The open space web on this site should furthermore be planned showing how it links into TRUP and surrounding open spaces, to demonstrate the network / continuous system of hard and soft spaces, functional continuity and visual legibility.
3.2.11.37. The infilling of the historic Liesbeek River as shown on this Landscape Master Plan, is not supported.
3.2.11.38. Hydrology and Flooding: Environmental Management Department understands that, according to the hydrological modelling, the current site level can be raised above the 1:100year flood line without significantly increasing local flood risks and without impacting on surrounding properties flood levels (apart from only about 4 residential properties). The cumulative impacts of water flows and possible flooding stemming from future developments within the entire TRUP (that includes PRASA and NRF proposals) should be addressed in further hydrological modelling prior to granting additional rights on the River Club site. The NEMA precautionary principle be applied where there are some elements of uncertainty.
3.2.11.39. Sustainable provision of services and buildings and ensuring a resilient development in light of climate change implications: The applicant should outline how the services that are to be provided are sustainable. This should include Construction materials, Energy - solar power, Water - grey water re use, SUDS (sustainable urban drainage systems and how Waste is dealt with (reduction, recycling and re-use of waste). A water and energy saving plan will be required to be submitted for approval at a later stage. The City's Management of Urban Stormwater Impacts Policy requires new developments above a certain size to use SUDS principles in their design to manage their stormwater run-off on-site.
3.2.11.40. The applicant should outline how the stormwater will be managed to be integrated with other spatial elements such as parks, playing fields, green roofs and public open space (hard and soft) and landscaped areas (In line with current international thinking).
3.2.11.41. Regarding implementation of green technologies and creating a sustainable development, plus employing principles of water sensitive spatial planning and design, the current proposal does not respond appropriately to principles of international best practice.
3.2.11.42. The proposal contained in the Motivation Report, by developing within the floodplain and filling in a high-faunal sensitivity riverine conservation area, and by piping a natural river underground, does not contribute towards the development of a resilient city capable of withstanding the effects of climate change. This is because the water percolation and aquifer recharge potential of the river is negated by piping the water out to sea. The loss of such a large waterbody and its service of cooling the environment through evaporation, and to provide water during low-flow seasons to fish and bird-life during drought periods, cannot be supported.

3.3. FURTHER REQUIREMENTS

- Environmental Management Department requires detailed Precinct Plans as part of this current application, showing the open space web and network throughout the entire site and interface with buildings and circulation areas and linkages to surrounding sites.
- A detailed river corridor management plan (as per requirements of Catchment Planning) is required. Such plan must show the enhancement of water quality, and restoration of water flows to the natural Liesbeek River, in addition to the management of the quality of the stormwater discharging into the Liesbeek River.
- A Landscape Master Plan and Guideline (as per requirements of Urban Design) is are required.
- The assessment of the receiving environment must be completed before recommendations can be made for this application.

4. CONCLUSION AND RECOMMENDATIONS
4.1. Despite the additional information submitted, Environmental Management Department does not support the proposed development proposal in its current form, for the reasons outlined above.
4.2. The Environmental Management Department believes that the land use management application is incomplete in its current state, because it omits any spatial component for approval, such as a Development Framework, Precinct Plans, Site Development Plan(s), or Landscape Master Plan. The application seeks rights to rezone from OS3 zone that is currently appropriate for a site located at the confluence of two rivers set within the 1:10year floodplain (Special Open Space 3) which is subject to frequent inundation and currently is an important Biodiversity Conservation Area. While seeking additional rights, the applicant makes no commitment, in terms of the land use approvals or deviations from policies sought, to seek approval for spatial plans indicating for example the upgrading and rehabilitation of the Liesbeek Canal (on the eastern bank of the River Club).
4.3. The proposed River Club mixed use office, commercial and residential development, including construction of roads across sensitive riverine and wetland enviornments, and infilling of the Liesbeek River bed and floodplains, is not in keeping with the Table Bay District Plan, nor the Biodiversity Objectives of the Municipal SDF, the approved Two Rivers Urban Park Contextual Framework, and various other City policies, and provincial and national legislation.
4.4. Environmental Management Department supports the proposed upgrade of the Liesbeek Canal on the eastern side of the River Club site, subject to detailed Construction and Operational Environmental Management Plans (including plans, elevations and sections) for the design, and management of the future rehabilitated environment.
4.5. The rehabilitation of the canalised section of the eastern Liesbeek River is in line with international best practice trends, and is not to be regarded as a substitution of habitat for filling in the historic Liesbeek River channel.
4.6. Infilling of the historic Liesbeek River (and converting it to a landscaped stormwater swale) is strongly opposed because this is one of the City's high faunal sensitivity Biodiversity Conservation Areas that has to be conserved and managed as such in perpetuity. The infilling of the Liesbeek River would compromise the functionality of the Raapenberg wetlands and associated fauna.
4.7. Environmental Management Department has no objection to some development on the site for uses possibly other than those allowed under Open Space 3, as long as they don't detract from the conservation functioning of the adjacent Conservation Areas within the historic Liesbeek River, part of the Black River (on the north-eastern boundary), the eastern wetlands on the River Club site, and the Raapenberg Bird Sanctuary, or detract from the cultural landscape and sense of place identified as important heritage factors. Such application would need to include the submission of a Site Development Plan as described in item 123 of the Municipal Planning By-law.
4.8. Floor area should only be determined following the submission of detailed spatial plans, including a Development Framework, Precinct Plans, and Site Development Plan in order to determine suitable parameters for the spatial distribution of such floor area. It is premature to award floor area of $150000 \mathrm{~m}^{2}$ (as a condition of rezoning to Subdivisional Area) prior to a simultaneous submission of a spatial plan indicating the location of such floor area, along with elevations and cross-sections and architectural treatment of such area.
4.9. Notwithstanding information contained in the Motivation Report ansd Supplementary Report, it is noted that none of this material can be enforced and is purely illustrative.
4.10. It is recommended that the various components of City policies, guidelines and strategies, from which the proposal deviates, be identified. This was requested by the applicant in correspondence, yet it has not yet been done comprehensively. It will require inputs from all the various departments to list the relevant sections of all the policies from which the development proposal deviates.

[^22]

Appendix A: Heritage Assessment - October 2018

Environmental Management Department is inputting into the Revised Submission (Revision 4)" Application for the Deviation from the Table Bay District Plan, Rezoning to Subdivisional Area and Approval to Construct Retaining Structures in Accordance with Item 126 of the DMS" including the Heritage Impact Assessment (HIA) and Visual Impact Assessment (VIA).

For your information our earlier comment in terms of the applicant's submission to Heritage Western Cape, the Environmental and Heritage Management Branch in EMD's comment was as follows:

The Heritage impact Assessment document identifies several heritage resources to be impacted on by the proposed development and provides a detailed analysis of the level of significance of those resources. The resources identified are subsequently filtered into "High-order cultural significances" and Low-order cultural significances". EMD is in agreement with which heritage resources have been identified and determined to be impacted on by the proposed development.

2.1 Purpose of the application:

It is proposed to redevelop the property (known as the River Club). In summary it is proposed to accommodate a mixed use development of $150000 \mathrm{~m}^{2}$ comprising retail Shops and Restaurants (retail uses), Offices, Dwelling units (approximately 20% of the total floor space will be residential and of that approximately 20% will be allofted to inclusionary housing), a Hotel and Places of instruction (and associated uses). Building heights will range from $\pm 16 \mathrm{~m}$ to $\pm 46 \mathrm{~m}$ (3 to 10 storeys) above base level. The proposal will entail the construction of retaining structures so that roads and habitable space are raised above the 1:100 year flood plain. The initial phase of the development proposal will see the partial construction of the Berkley Road extension, which in future phases will be further extended to provide access from Berkley Road to Malta Road/Leisbeek Parkway. Additionally the Liesbeek Canal on the eastern boundary of the site will be rehabilitated into a river course, while the 'old' Liesbeek River Channel on the western boundary of the site will largely be filled and landscaped to accommodate a vegetated stormwater swale.

EMD believes that additional emphasis should be placed on the levels of significance of the following two subject areas:

1. The Cultural Landscape: Under 7.3 Conclusions on pages 50 and 51 regarding significances, the document states that, "We regard the River Club site and its surrounds to be of very high environmental/topographical/ecological and historical significance both as a flood plain of the Liesbeek River and as the site of the early confrontations between indigenous peoples and settlers."
This in essence is the cultural landscape which encompasses the River Club site and surrounds. The 'old river course', albeit altered and currently disjointed over time, forms an integral part of the environmental, topographical, ecological and historical significance of this cultural landscape.

EMD agrees with the statement regarding these very high levels of significances and will similarly use it to measure the potential impacts thereon by the proposed development and related alternatives.
This cultural landscape is a legacy for the whole of society and reveals aspects of our country's origins and developments as well as our evolving relationships with the natural world. The ongoing care and interpretation of these sites improves our quality
of life and deepens a sense of place and identity for future generations. - The Cultural Landscape Foundation.
2. "The South African Astronomical Observatory (SAAO) campus or site, comprised of heritage buildings and spaces associated with the early nineteenth century establishment of the Royal Observatory, has been graded a Grade I site by South African Heritage Resources Agency (SAHRA). The entire SAAO site is of the highest (National) importance in terms of its heritage significance. This is a site of outstanding cultural and scientific significance and has contributed in international terms to the science of astronomy. It is an outstanding example of a layered heritage landscape, comprising buildings of architectural significance and activities of scientific significance set within a treed campus. The campus is of international scientific significance and has been the subject of a UNESCO World Heritage Site report." - Melanie Attwell and Associates and Arcon Heritage and Design: Two Rivers Urban Park Baseline Heritage Study October 2016.

Further to the document's proposed heritage-related design indicators - criteria for decision making, EMD would add more emphasis on the three 'bullet points' which relate to, the "pre-1952 river course", design indicators intending to guide development in more prescriptive detail including heights, scale, and density, and the SAAO site.
As described above, the cultural landscape, of which the pre- 1952 river course is an integral part, as well as the SAAO site, are of a very high level of heritage significance and a proposed development's heights, scale and density would certainly also impact on any relative levels of heritage significance.

Alternative 1: The Riverine Corridor Alternative.

Approximately 150000 sq.m of floor space will be developed.

The impact on the level of significance of the cultural landscape will be very high in terms of the level of physical and visual change on the environmental/topographical/ecological and historical significance of the area and by the proposed heights, scale, and density of this alternative. This negative impact on the significance of a heritage resource will also carry over to the SAAO site for the same reasons of the suggested heights, scale and density, as can be seen from the Masterplan Massing - Preferred Alternative 3D image provided in the Architectural Report, dated 2018-01-15 by Vivid Architects which is contained in Appendix B of the Urban Design Report.
Mitigation might be in the form of reducing the proposed build heights and density as well as a reduction of hard surface areas. Stepping back and away from the SAAO site in terms of height and relative proximity with the aim of creating a more sensitive relationship between the two sites and establishing of historic view lines might also be implemented through development layout adaption.

Infilling of the old Liesbeek River channel and remodelling of this channel into a vegetated stormwater swale will also impact negatively on the high level of significance of the cultural landscape.
The old Liesbeek River channel forms an integral part of the environmental/ topographical/ ecological and historical significance and current status of the area which can clearly be seen from Figures 2 and 21 of the document as well as from the cover photograph of The River Club: Development Alternatives, prepared by Planning Partners dated November 2017. Removing the old Liesbeek River channel's ability to be perceived as a historical watercourse and thereby severing its role in the story line of the cultural landscape will surely impact negatively on the significance of that resource. This might be mitigated by the inclusion of a watercourse of sorts within the proposed 'park-like' pedestrian and cycle path 'transformed riverine corridor'.

Alternative 2: Island Concept Alternative.

Approximately 150000 sq.m of floor space will be developed.
Alternative 1 and 2 will have a similar level of impact except that Alternative 2 will impact less on the cultural landscape. This will be as a result of the proposed upgrading of the old Liesbeek River channel and retention of the conal as a manmade structure. The existing watercourses will remain largely unchanged.

Alternative 3: Mixed Use Affordable Alternative.

Approximately 110000 sq.m of floor space will be developed.
This reduction in proposed floor area impacts less on the cultural landscape and to a lesser degree on SAAO than do Alternatives 1 and 2.

Alternative 4: Reduced Floor Space Alternative.

Approximately 102000 sq.m of floor space will be developed. Similar impacts on levels of heritage significance as Alternative 3.

Conclusion to the Heritage Impact Assessment:

The level and intensity of these impacts might be understood better through the availability of appropriate studies in the form of, or similar to, visual and traffic impact assessments for example and, in addition, a peer review of the document, if not undertaken already, could also add value to the process as well as to the development as a whole.

EMD is not opposed to the redevelopment of the River Club site. The heritage resources identified to be impacted on by the proposed development have varying degrees of proximity to the site and heritage levels of significance but, EMD believes that the levels of significance of, in particular, the cultural landscape and the SAAO site will be compromised or reduced by the proposal, that mitigating measures should be considered in order to reduce the negative impact.

With specific reference to the rezoning of the property from Open Space 3: Private Open Space zone to Subdivisional Area, comprising General Business and Open Space Zones, Part 3: Open Space Zoning 3: Special open space (OS3), Item 105 Development Rules states that, The following development rules apply:
(a) The City may require a site development plan for a primary use, and shall require a site development plan for a consent use application.
(b) The site development plan as approved by the City shall constitute the development rules for a primary use if applicable, and a consent use.
(c) The provisions for a site development plan in item 123 shall apply.

Please provide clarity as to the meaning and implications of a Subdivisional Area and how such relates to when a site development plan will be required by the City and the resultant request for comment by EMD.
Does the current Revised Submission (Revision 4) document constitute more of a conceptual layout which speaks to bulk, building heights and general layout or is the document fixing the bulk and layout as depicted in Precinct 1 and Precinct 2?

Contained in the Visual Impact Assessment Report Prepared by Srk consulting Report Number 78320/42A/2 November 2017, the following points are noted:

4.2 Visual Character

Although most of the area surrounding the site can be described as a substantially developed landscape (highly transformed landscape), the site and the immediate surrounds can be defined as an "isolated" transition landscape associated with the interface between highly developed urban areas and modified natural elements.

EMD are not in agreement with the above statement regarding the visual character of the site and immediate area and believe a more appropriate description to be as written by the Cape Institute for Architects, dated 8February 2018, in a response to Dr Townsend's presentation which reads.
"the site functions as an important urban threshold, characterised by the openness of the area and the network of watercourses crossing it. This character sets it in contrast to the urban fabric that surrounds it, and makes, along with the extended context, a unique place within the city. Many of the buildings and uses that are already located "between the rivers" are located here precisely because of the threshold quality the area offers.
The proposed development does not acknowledge the unique and symbolic "threshold role" that the site plays, both in its formal layout, scale, and in the uses that are being proposed. Having to raise the site by 3 m or more to achieve an acceptable height above the flood water level further exacerbates the concern that the development would be an invasion of this significance."

In addition, the VIA describes impact further under,

6.2 Operational Phase

6.2.1 Altered Sense of Place caused by the Change in Character of the Site

The proposed development is located in the midst of a wholly transformed urban environment, but has remained underdeveloped, conferring a more "natural" sense of place to surrounding (urban) receptors.
The development will change the character of the site from an underdeveloped green open space to a highly developed site. Although the River Club site is surrounded by urban development, due to the size of the proposed development, its location at the confluence of the Liesbeek River and Black River, and long-term status as a green open space, the change in character to a highly developed site may be experienced as a strong visual contrast for surrounding (urban) receptors and frequent visitors to the area.
Loss of sense of place is expected since the development and the change in the state of the site is mostly incongruent with the current nature of the site viz. green open space and use of the site viz. recreation.
The impact for both alternatives is assessed to be of high significance and with the implementation of mitigation, is reduced to medium (Table 6-2).

EMD is in agreement that impact of the proposal will be of high significance but believe that due to the proposed bulk and heights, and implementation of mitigation, the impact will not be reduced to medium but will remain as high. Similarly, EMD believe that Visual Intrusion as per 6.2.2 below will also remain as high significance. See figures 29b and 29j below.

6.2.2 Visual Intrusion caused by the Development

The impact for both alternatives is assessed to be of high significance and with the implementation of mitigation, is reduced to medium (Table 6-3).

7.2 Conclusion of Visual Impact Assessment

In many respects, the visual impact is pronounced, but not inconsistent with a cityscape. However, the sense of place impact is more significant and difficult to mitigate. Receptor perceptions are also important: for some, retention of the open space might be critical to retaining the sense of place; for others, urban development, especially if celebrated by iconic structures, may be valued. The development could both alter sense of place and, at the same time, deliver a functional development with interesting structures with their own visual appeal.

EMD agrees that the visual impact is pronounced but is not supportive of the above visual impact conclusion which describes the proposal as being "not inconsistent with a cityscape". The cityscape of Cape Town as depicted in the before and after figures below clearly shows a significant and pronounced change and impact from a visual perspective. This impact can be mitigated by reducing bulk and building heights.
Similarly with points 4.3.3 and 4.3.5 below EMD believes that the cumulative impact is of high significance and not of medium as concluded by the assessment.

Figure 29a: Viewpoint 1 - view from M5 freeway looking southwards (Source: SRK)

Figure 29b: Viewpoint I - photomontage from M5 looking southwards (Source: SRK)

Figure 29: Viewpoint 7 - view from Malta Road looking southeast (Source: SRK)

Figure 29j: Viewpoint 7 - photomontage from Malta Road looking southeast (Source: SRK)

4.3.3 Impact Assessment

Cumulative impact
The severity of the impact on the visual landscape and sense of place is rated as moderate, and
is assessed to be of a medium extent. The cumulative impact is thus assessed to be of medium
significance.

4.3.5 Conclusion of the Impact Assessment

The Draft VIA concludes with following statement:
"Though tools are available to more scientifically and dispassionately assess visual and sense of place impacts, VIAs require a large degree of professional, subjective judgment. This is more difficult for a project such as the River Club development, which is located in the midst of a wholly transformed urban environment on land very well located for development, but which has remained undeveloped and conferred a natural sense of place to surrounding (urban) receptors.
In many respects, the visual impact is pronounced, but not inconsistent with a cityscape. However, the sense of place impact is more significant and difficult to mitigate. Receptor perceptions are also important: for some, retention of the open space might be critical to retaining the sense of place; for others, urban development, especially if celebrated by iconic structures, may be valued. The development could both alter sense of place and, at the same time, deliver a functional development with interesting structures with their own visual appeal."

3.12 City of Cape Town Tall Building Policy (2013)

The City of Cape Town Tall Building Policy was adopted with the aim of controlling and guiding the development of tall buildings in the city. It is essentially a guide for the location and design of tall buildings that require height related departures, as well as an assessment tool that allows the City to ensure responsible growth that makes a positive contribution to placemaking and the public realm.
The main principles of the Tall Building Policy are to:
Ensure that taller buildings fit into the context of the surrounding cityscape, without negative impacts;

P7: "Area character analysis will inform the design of tall buildings"
Urban Concepts undertook a contextual analysis in the urban design indicators and recommendations report (refer to Annexure M). The analysis includes an assessment of surrounding building height and form. Figure 14 overleaf provides an illustrative analysis of the surrounding buildings. The following has been deduced by Urban Concepts:

- Heights of the buildings at the Black River Park development to the west of the site vary between 4-9 storeys (i.e. $15 m-32 m$).
- The PRASA buildings to the north are relatively low at approx. $20 \mathrm{~m}-25 \mathrm{~m}$ in height.

However, these appear monolithic on the landscape, particularly when experienced from the site.

- The premier foods buildings and silos, located to the north-west of the site, range between (approximately) $20 \mathrm{~m}-50 \mathrm{~m}$ in height. The silos, in particular, dominate the skyline in this part of the city.
- The M5 office park (located adjacent to the M5 to the east of the site) are $3-4$ storeys in height (i.e. approximately 15 m).
- Buildings on Observatory hill are relatively low (i.e. approximately 10 m).

Figure 14: Analysis of surrounding building height and form (Source: Urban Concepts)
EMD's further analysis of the proposal reads directly to P6 of the City's Tall Building Policy Assessment on merit within the building's unique context which states that, "Approval of the height of a tall building should not be seen as a precedent for other applications in the same area. The final height that is approved will depend on the tall building's motivation towards an appropriate location, response to the context and its compliance with the Tall Buildings Policy assessment criteria."
Specifically, criteria 2 and 3, Relationship to physical context and relationship to historic and cultural context are not met by the proposal. EMD considers the proposed heights to be incongruent with the significance of the historical and cultural context and that mitigation would be in the form of reducing proposed heights.

Of relevance within the Environmental Strategy For the City of Cape Town (Policy 46612) which was approved by Council on 24 August 2017 (C05/08/17) are the following:

6.11. Protected Cultural Heritage

Cape Iown's cultural heritage as it relates to the buil environment is a significant economic and social asset, and contributes significantly to the unique sense of place, strong global identity, and community spirit that is characteristic of the city.

Principle

In taking decisions, operating, and planning for the future, the City will ensure that the value of the city's cultural heritage is recognised, protected and promoted, and that the benefits and opportunities it provides to communities are realised.

Directive

In this regard, the City will:
6.11.1. Consider all developments, including municipal infrastructural development, and land-use changes in terms of their potential impact on the city's cultural heritage, and ensure that negative impacts are prevented, or where they cannot be prevented, minimised or mitigated, and ensure that positive impacts are identified, maximised, and enhanced;
6.11.2. ensure that the city's scenic drives and cultural landscapes are protected in order to maintain the scenic sense of place and tourism value and potential that these provide;
6.11.3. ensure that the city's cultural heritage, including the buit environment and sites of cultural and historical significance that promote Cape Town's unique sense of place and celebrate
the city's diverse cultures, are appropriately protected and managed, while promoting sensitive new development and adaptive re-use in line with the City's densification policy;
6.11.4. identify, assess, conserve, manage and enhance the heritage resources, structures and landscapes of all the people of Cape Town and ensure that the memories and values associated such resources are appropriately represented; and
6.11.5. ensure that cemeteries and memorial gardens that meet the full range of religious, spiritual, and cultural needs, are adequately incorporated into the City's open space planning processes.

EMD believes that the Directive points 6.11.1 through 6.11.4 are not fully complied with by the proposal in that the full significance of the unique sense of place and cultural landscape is not acknowledged sufficiently by the current development proposal which impacts overly negatively on these values. Mitigation is by means of reconfiguring the Liesbeek Canal and landscaping green open areas but the suggested bulk and heights of the proposed structures and resultant built forms should be reduced in order to present a more sensitive alignment with cultural landscape and sense of place.

Section 8.4 of the Environmental Strategy For the City of Cape Town endorses the City's Cultural Heritage Strategy (2005) as being the guide for heritage decision-making.

Within the Cultural Heritage Strategy, the following should be noted:

2.1 Conceptual framework

The following Cultural Heritage Strategy describes the principles and objectives required for effective heritage management. The policies must be applied according to the City's legislative
mandate, and through the appropriate management structures.

2.2 Vision

Cape Town is a unique historic city. It derives its character from evidence of a layered and multifaceted history, its dramatic scenic setting, its historical townscapes and cultural landscapes, its cultural and heritage diversity and the traditions and memories that arise from its past.
The role of the City is to co-ordinate the protection and enhancement of this unique character.
The protection of heritage sites and the traditions and memories associated with them, are an important part of City management.
The City's vision is of a unique historic city where the heritage of its past and present inhabitants is respected, protected and enhanced through appropriate heritage management practices;
adherence to sensitive, socially aware and appropriate heritage concepts; and integration with other City responsibilifies and policy objectives

In addition, 2.5 Policies of principle states:

Policy 3: Authenticity

Each heritage resource reflects a unique expression resulting from a particular historical process.
The original fabric and character and use of the heritage resource determines its value and can be read as an historical record reflecting its historical significance and cultural value.
The City will ensure that heritage resources are conserved as much as possible in their authentic state and function, to reflect their historical and cultural value.
The City will ensure that a distinction be made between the authentic fabric of a resource and later and contemporary interventions.

Policy 5: Context and Scale

The social and landscape context of heritage sites is critical in the understanding and conserving of their significance. The significance of a heritage resource is partly determined by its context and scale.
The context can be both social and spatial, taking into account both historical and contemporary perceptions of their significance. A heritage landscape may be significant by providing a context for a heritage element, while also representing a valuable heritage resource in itself.
Heritage resources can be interpreted and understood at a variety of scales, from an object to an entire landscape.
An understanding of the nature of significance at different scales is fundamental to a holistic approach to heritage management.
The City will consider the relevance of social and landscape contexts when making decisions affecting heritage resources.

The City will acknowledge the significance of scale in making appropriate conservationrelated decisions and in evaluating heritage resources within broader contexts.
The City will ensure that the character of places based on their context and scale, (rather than individual sites and objects) is protected, wherever appropriate.
The City will ensure where possible that new developments in historic precincts acknowledge an appropriate scale as well as an appropriate architectural language. Scale, massing, articulation and texture will be regarded as critical considerations in determining a response to a development proposal.

Policy 7: Cultural landscapes

The City of Cape Town and surrounding areas represent a unique and dramatic natural and cultural landscape. Within this landscape a wide variety of cultural landscapes can be identified which differ in scale and nature. They provide evidence of the City's history over time and contribute to a sense of place and identity. They provide dynamic reference points and positive instruments for growth and change.
The City will conserve the unique cultural landscape and scenic qualities of the region for the benefit of its inhabitants and for tourism. The City will ensure the identification and appropriate management of such cultural landscapes as fundamental to the economy and well-being of the City.
The City will ensure that the cultural landscape is protected and managed as an integral part of development and environmental planning.
The City will ensure that the protection of the culturallandscape is enhanced by recognising and giving value to the many layers of cultural significance resulting from the area's long history and prehistory.

Cultural landscape can be described as a physical area with natural features and elements modified due to human activity and resulting in patterns of evidence layered over time in the landscape, which give a place its distinctive spatial historical aesthetic symbolic and memorable character.
EMD believes that the proposed development does not conserve sufficiently the historical and cultural value and significance of the cultural landscape of the area. The importance of historic and existing spatial context is not recognised in the proposed development in its current form which could be mitigated by a reduction in bulk and heights.

Heritage Impact Conclusion:

The application for the Deviation from the Table Bay District Plan, Rezoning to Subdivisional Area and Approval to Construct Retaining Structures in Accordance with Item 126 of the DMS which includes the Revised Submission (Revision 4) is NOT SUPPORTED in totality by EMD (Heritage) as the proposal does not align with current approved City policy and Strategies in terms of the City's Tall Building Policy, Environmental Strategy and Cultural Heritage Strategy.

EMD is not opposed to the deviation, rezoning, redevelopment of the River Club site and proposed layout, but NOT SUPPORTIVE OF THE PROPOSED BULK OR HEIGHTS OF THE DEVELOPMENT which should be reduced significantly in order for synthesis with and recognition of the areas recognised and valued heritage resources, cultural landscape and unique sense of place to be achieved.

Section 8.4 of the Environmental Strateay For the City of Cape Town endorses the City's Cultural Heritage Strategy (2005) as being the guide for heritage decision-making.

Within the Cultural Heritage Strategy, the following should be noted:

2.1 Conceptual framework

The following Cultural Heritage Strategy describes the principles and objectives required for effective heritage management. The policies must be applied according to the City's legislative
mandate, and through the appropriate management structures.

2.2 Vision

Cape Town is a unique historic city. It derives its character from evidence of a layered and multifaceted history, its dramatic scenic setting, its historical townscapes and cultural landscapes, its cultural and heritage diversity and the traditions and memories that arise from its past.
The role of the City is to co-ordinate the protection and enhancement of this unique character.
The protection of heritage sites and the traditions and memories associated with them, are an important part of City management.
The City's vision is of a unique historic city where the heritage of its past and present inhabitants is respected, protected and enhanced through appropriate heritage management practices;
adherence to sensitive, socially aware and appropriate heritage concepts; and integration with other City responsibilities and policy objectives

In addition, 2.5 Policies of principle states:

Policy 3: Authenticity

Each heritage resource reflects a unique expression resulting from a particular historical process.
The original fabric and character and use of the heritage resource determines its value and can be read as an historical record reflecting its historical significance and cultural value. The City will ensure that heritage resources are conserved as much as possible in their authentic state and function, to reflect their historical and cultural value.
The City will ensure that a distinction be made between the authentic fabric of a resource and later and contemporary interventions.

Policy 5: Context and Scale

The social and landscape context of heritage sites is critical in the understanding and conserving of their significance. The significance of a heritage resource is partly determined by its context and scale.
The context can be both social and spatial, taking into account both historical and contemporary perceptions of their significance. A heritage landscape may be significant by providing a context for a heritage element, while also representing a valuable heritage resource in itself.
Heritage resources can be interpreted and understood at a variety of scales, from an object to an entire landscape.
An understanding of the nature of significance at different scales is fundamental to a holistic approach to heritage management.
The City will consider the relevance of social and landscape contexts when making decisions affecting heritage resources.

The City will acknowledge the significance of scale in making appropriate conservationrelated decisions and in evaluating heritage resources within broader contexts.
The City will ensure that the character of places based on their context and scale, (rather than individual sites and objects) is protected, wherever appropriate.
The City will ensure where possible that new developments in historic precincts acknowledge an appropriate scale as well as an appropriate architectural language. Scale, massing, articulation and texture will be regarded as critical considerations in determining a response to a development proposal.

Policy 7: Cultural landscapes

The City of Cape Town and surrounding areas represent a unique and dramatic natural and cultural landscape. Within this landscape a wide variety of cultural landscapes can be identified which differ in scale and nature. They provide evidence of the City's history over time and contribute to a sense of place and identity. They provide dynamic reference points and positive instruments for growth and change.
The City will conserve the unique cultural landscape and scenic qualities of the region for the benefit of its inhabitants and for tourism. The City will ensure the identification and appropriate management of such cultural landscapes as fundamental to the economy and well-being of the City.
The City will ensure that the cultural landscape is protected and managed as an integral part of development and environmental planning.
The City will ensure that the protection of the cultural landscape is enhanced by recognising and giving value to the many layers of cultural significance resulting from the area's long history and prehistory.

Cultural landscape can be described as a physical area with natural features and elements modified due to human activity and resulting in patterns of evidence layered over time in the landscape, which give a place its distinctive spatial historical aesthetic symbolic and memorable character.
EMD believes that the proposed development does not conserve sufficiently the historical and cultural value and significance of the cultural landscape of the area. The importance of historic and existing spatial context is not recognised in the proposed development in its current form which could be mitigated by a reduction in bulk and heights.

Heritage Impact Conclusion:

The application for the Deviation from the Table Bay District Plan, Rezoning to Subdivisional Area and Approval to Construct Retaining Structures in Accordance with Item 126 of the DMS which includes the Revised Submission (Revision 4) is NOT SUPPORTED in totality by EMD (Heritage) as the proposal does not align with current approved City policy and Strategies in terms of the City's Tall Building Policy, Environmental Strategy and Cultural Heritage Strategy.

EMD is not opposed to the deviation, rezoning, redevelopment of the River Club site and proposed layout, but NOT SUPPORTIVE OF THE PROPOSED BULK OR HEIGHTS OF THE DEVELOPMENT which should be reduced significantly in order for synthesis with and recognition of the areas recognised and valued heritage resources, cultural landscape and unique sense of place to be achieved.

FLOODPLAIN AND RIVER CORRIDOR MANAGEMENT POLICY

APPROVED BY COUNCIL : 27 MAY 2009
C 58/05/09

Roads \& Stormwater Department

Catchment, Stormwater and River Management Branch

Floodplain and River Corridor Management Policy

Balancing flood risk, ecological and socio-economic considerations in developments near watercourses and wetlands

Version 2.1
Approved by Council
27 May 2009
C 58/05/09

eify of cape town | Isixeko sasekapa | stad raapstad
(Previously entitled: Floodplain Management Guidelines)

Table of Contents

1 Preamble 1
2 Definitions 1
3 Introduction 2
4 Legislative Context and Legal Mandate 3
4.1 National 3
4.2 Provincial 3
4.3 City of Cape Town 3
5 Policy Rationale 4
6 Policy Statement 5
7 Scope and Application 5
8 Objectives 5
9 Planning, Safety, Environmental and Socio-economic Considerations 5
9.1 Plans / Sectoral plans 5
9.2 Flood Management and Public Safety
9.2.1 Floodine Determination 7
9.3 Ecological Buffers 8
9.4 Geomorphological Processes 9
9.5 Socio-economic Considerations 9
9.6 River Corridor 10
10 Assessment of Proposals 10
10.1 Zoning Schemes, Structure Plans and Related Policies 10
10.2 Land Use Planning Applications 11
10.2.1 New Development Rights 11
10.2.2New Development Rights on Existing Building Footprint 11
10.3 Building Plan Applications (Exercising of Existing Development Rights) 11
10.4 Development Layouts 12
10.5 Table 1: Framework for the Assessment of Proposals 13
11 Commencement and Implementation 16
11.1 Commencement Date 16
11.2 Existing Policies / Guidelines Repealed 16
12 General 16
12.1 Statutory Permits and Approvals 16
12.2 Indemnity 16
12.3 Copyright 16
12.4 References 16

1 Preamble

There is a developing worldwide view in many cities that watercourses and wetlands, whether natural or constructed, form an integral component of urban stormwater management systems, are important for sustaining the aquatic ecology of the city, and are an essential element in restoring the urban fabric of the city by providing both recreational and socio-economic opportunities to all citizens.

A well managed watercourse / wetland is a valuable resource for improving the quality of life and aesthetic nature of an urban area and provides benefits for public health, recreation and economic growth. This is particularly important in the context of changing weather patterns and the associated local, national and international strategies targeting sustainability issues.

This policy document is an enhancement of the former Floodplain Management Guidelines (Version 1.0) published in September 2003. Various improvements have been effected to align the policy principles to corporate strategic objectives. It outlines the procedure for managing development adjacent to watercourses and wetlands taking cognisance of the flood regime, aquatic and riparian ecology as well as socio-economic factors.

2 Definitions

In this policy, unless inconsistent with the context:-
"Council" means the City of Cape Town;
"development" means any man-made change to property, including but not limited to construction or upgrading of buildings or other structures, filling, paving, municipal services, or the associated preparation of land;
"ecological buffer" means a strip of land adjacent to a watercourse, wetland or vlei required for the protection and enhancement of these ecosystems;
"fill" means the placement of fill material such as natural sands, dirt, soil or rock and may include concrete, cement or other waste materials at a specified location to bring the ground surface up to a desired elevation;
"floodlines" mean lines on a map or drawing depicting water levels likely to be reached by a flood having a specified recurrence interval;
"floodplain" means the land adjoining a watercourse which is susceptible to inundation by floods up to the one hundred year recurrence interval;
"floor" means the inner, lower surface of a room, garage or basement to which the occupants of a building have access;
"recurrence interval" means the average interval between rainfall or flood events equaling or exceeding a specified severity;
"river corridor" means a mixed-use corridor comprising a watercourse and/or associated wetlands, the floodplain, the ecological buffer and the area required for specific aesthetic, recreational and/or socio-economic needs. This combined area must be managed in an integrated manner which balances the flooding, environmental, social and economic issues;

"stormwater" means water resulting from natural precipitation and/or the accumulation thereof and includes groundwater and spring water ordinarily conveyed by the stormwater system, as well as sea water within estuaries, but excludes water in a drinking water or waste water reticulation system;
"stormwater system" means both the constructed and natural facilities, including pipes, culverts, watercourses and their associated floodplains, whether over or under public or privately owned land, used or required for the management, collection, conveyance, temporary storage, control, monitoring, treatment, use and disposal of stormwater;
"structure" means any man-made feature affixed to the ground or attached to something located on the ground, including but not limited to fences, walls, berms, levees, fill, storage tanks, shelters or buildings;
"top of bank" of a watercourse means a position identifiable by scour lines, vegetation limits, changes in bed and bank materials, the presence of flood deposited silt, or abrupt changes in slope;
"water sensitive urban design" is an approach which seeks to ensure that development in urban areas is holistically planned, designed, constructed and maintained so as to reduce negative impacts on the natural water cycle and protect aquatic ecosystems.
"watercourse" means a river, stream, channel, canal, vlei, wetland, dam or lake in or into which water flows regularly or intermittently. Reference to a watercourse includes, where relevant, its bed and banks;
"wetland" means land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which land in normal circumstances supports or would support vegetation typically adapted to life in saturated soil. This definition thus includes, but is not necessarily limited to, water bodies such as lakes, salt marshes, coastal lakes, estuaries, marshes, swamps, vleis, pools, ponds, pans and artificial impoundments.
"wetland delineation" means the determination and marking of the boundary of a wetland using nationally accepted guidelines / methodologies.

3 Introduction

Watercourses and wetlands are integral to the stormwater management system, are an important component of the City's biodiversity network, and represent an essential element in restoring the urban fabric of the City by providing both recreational and economic opportunities.
This policy supports the Roads and Stormwater Department objectives incorporated in the Integrated Development Plan for the City of Cape Town, namely to;

- Reduce the impact of flooding on community livelihoods and regional economies
- Safeguard human health, protect natural aquatic environments, and improve and maintain recreational water quality

The management of land use, development or activity adjacent to watercourses and wetlands is important for the following reasons:

- It is far more cost effective, in the long term, to develop in areas where the threat of flooding is infrequent and the severity of flooding is minimal as opposed to the retrospective

implementation of flood mitigation works which would generally be extremely costly and sometimes prone to catastrophic failure when flood flows exceed the design capacity of infrastructure
- Climate change predictions indicate greater variability in the intensity and magnitude of storm events coupled with accelerated sea level rise. These uncertainties pose significant challenges for the management of major drainage systems.
* Encroachments result in ecological degradation, often reducing water quality and precipitating loss of ecological resources irreversibly.
- Since modifications to natural systems may disrupt natural aquatic and geomorphological processes they require a long term maintenance commitment. Therefore urban activity must be managed in such a way that maintenance activities can be adequately conducted.
- To promote a sense of place and recreational enjoyment for communities.

This policy describes a merit based approach for dealing with land use, development or activity proposals near watercourses and wetlands.

4 Legislative Context and Legal Mandate

Land use, development and associated activities influenced by this policy are dealt with in terms of the statutes and planning frameworks highlighted in the following sections.

4.1 National

- National Building Regulations \& Building Standards Act, 1997 (Act 103 of 1977)
- Conservation of Agricultural Resources Act (Act 43 of 1983)
- National Water Act (Act 36 of 1998)
- National Environmental Management Act (Act 107 of 1998)
- Disaster Management Act (Act 57 of 2002)
- National Environmental Management: Biodiversity Act (Act 10 of 2004)
- National Environmental Management: Protected Areas Act (Act 57 of 2004)

4.2 Provincial

- Western Cape Planning \& Development Act (Act 7 of 1999) (This Act will apply upon its coming into operation).
- Land Use Planning Ordinance, 1985 (Ordinance 15 of 1985)

4.3 City of Cape Town

- Integrated Development Plan (2007/8 to 2011/12)

The Roads and Stormwater Department objectives are incorporated in the Integrated Development Plan for the City of Cape Town:

- Reduce the impact of flooding on community livelihoods and regional economies
- Safeguard human health, protect natural aquatic environments, and improve and maintain recreational water quality
- By-law relating to Stormwater Management (Promulgated September 2005 -PG 6300) together with which this policy is to be read and interpreted.

The City's By-law relating to Stormwater Management defines the stormwater system to mean "both the constructed and natural facilities, including pipes, culverts, watercourses and their associated floodplains, whether over or under public or privately owned land, used or required for the management, collection, conveyance, temporary storage, control, monitoring, treatment, use and disposal of stormwater".

Clauses 4 and 5 of the By-law deal with the protection of the stormwater system (which includes the natural and built systems and associated floodplain) and the prevention of flood risk.

It is in terms of this By-law therefore that Council may prohibit or conditionally permit development in areas adjacent to watercourses and wetlands.

In addition, a number of other documents have been produced over the years which have referred to the management of development adjacent to watercourses and wetlands, either directly or by implication, and considered how these areas should be managed. Some of the more pertinent are listed below.

- Greening the City: Open Space and Recreation Plan for Cape Town (1982)
- Roads and Stormwater Department: Catchment, Stormwater and River Management Strategy (2002)
- Biodiversity Strategy (2003) and Biodiversity Report (2008)
- Coastal Zone Strategy (2003) and Coastal Zone Management Review and State of the Coast Report Year 3 (2006)
- CMOSS - An Open Space Strategy (2005)
- Planning for Future Cape Town (2006)

5 Policy Rationale

Within the confines of the Cape Town Metropolitan Area the pressure to develop is significant and requires careful management to avoid developing in high flood risk areas, to protect the environmental integrity of aquatic resources and to ensure that permitted development enhances the aesthetics and character of the adjacent watercourses / wetlands.

In order to achieve this, a new approach is required where engineering, environmental and socio-economic elements are assessed and integrated as the vision for a particular watercourse $/$ wetland system.

In this Policy a merit based approach is advocated for dealing with proposals within and adjacent to floodprone areas and environmental buffers. In addition, socio-economic considerations are also introduced whereby any permitted development will take cognizance of the presence of the watercourse / wetland and thereby holistically enhance the urban fabric of the area.

This Policy is important in achieving the service outcomes (refer to Section 3) namely; reducing the impact of flooding on people and properties, and of safeguarding human health, aquatic environments and improving and maintaining recreational water quality.

$$
-4 \text { - }
$$

6 Policy Statement

"In order to ensure sustainable development and associated activities within or adjacent to natural and built stormwater systems, and that there is a balanced consideration of potential flood risk, environmental impacts and socio-economic needs, all developments within these areas shall be planned and designed in accordance with best practice and the requirements and conditions laid down in this policy."
This policy supports the service outcomes as highlighted in Section 3 above. It furthermore ensures administrative actions with respect to land use planning applications that are lawful, reasonable and procedurally fair.

7 Scope and Application

This policy is applicable to land use, development or building or activity proposals adjacent to watercourses or wetlands. The principles regarding flood management can also be applied to development in the vicinity of formal stormwater management systems.

8 Objectives

The objectives of this policy are to manage development in a manner that;

- Limits or reduces exposure to flood risk by avoiding hazardous, uneconomic or unwise use of floodplains, thereby protecting life, property and community infrastructure.
- Protects the natural flood carrying capacity of watercourses and wetlands.
- Protects and enhances the intrinsic value and the environmental goods and services provided by watercourses, wetlands and associated riparian areas and floodplains.
- Facilitates the beneficial integration of watercourses into the urban landscape by creating an aesthetically pleasing public resource which will ultimately allow for the social and economic up-liftment of communities adjacent to watercourses and wetlands.
- Provides an effective decision making tool for officials, developers and consultants by introducing an element of predictability with regard to applications for development along watercourses / river corridors and adjacent to wetlands.
- Promotes sustainable development from engineering, environmental and socioeconomic perspectives.

9 Planning, Safety, Environmental and Socio-economic Considerations

Land use, development or activities near watercourses and wetlands must be appropriate for the anticipated degree of flood risk whilst minimising concomitant environmental impacts and sustaining a sense of place and urban form. The following sections outline the planning, safety, environmental and socio-economic aspects to be considered when evaluating applications as envisaged in Section 7 above.

9.1 Plans / Sectoral plans

Cognisance must be taken of applicable requirements and recommendations contained in various plans / related documents. Various categories of plans that should be consulted where

available are listed below. Sound engineering and environmental judgment should be applied in the absence of these guide plans.

- Roads and Stormwater Department: Catchment, Stormwater and River Management Strategy 2002-2007
- Catchment \& River Management Plan
- Stormwater Master Plan

9.2 Flood Management and Public Safety

Watercourses and their associated floodplains can convey significant volumes of water under flood conditions. For the purposes of this policy, a floodplain is defined as the area susceptible to inundation by the 100-year flood, as indicated in Figure 1 below.

Figure 1: Schematic representation of floodplain depicting watercourse and significant floodlines
The high hazard zone within a floodplain, based on an analysis of the expected flow characteristics of the 100-year flood, is graphically indicated in Figure 2 below. The ability to wade or gain vehicular access as well as the stability of structures such as dwellings or boundary walls are deemed seriously compromised under these conditions. No new or additional rights or the exercising of existing development rights will be granted to properties located within the high hazard zone.

The permissible extent and nature of land use, development or activities within floodplains must be subject to stringent evaluation and control in the interests of public safety. In particular, obstruction to the free flow of water within the 20 -year floodline area shall not be permitted. However, between the 50 and 100-year floodlines, some developments or activities may be permitted, subject to such conditions as the City may in its discretion impose, while developments with particular evacuation or emergency response issues and high risk developments will only be permitted above the 100-year floodline (refer to Table 1).

Any proposed development or redevelopment within the floodplain must be supported by a report by a registered professional engineer to ensure that any new or existing structure can withstand the forces and effects of floodwaters (refer to requirement R1 in Table 1). If building plans are submitted in respect of proposed buildings within the floodplain and such a report has not previously been submitted, it must be included with the building plans.

Figure 2: Flood hazard zones

9.2.1 Floodline Determination

Where floodlines have not previously been determined for a particular location, the developer will be required to procure the services of a suitably qualified registered engineering professional to undertake such determinations at own cost and to submit a report in connection therewith together with such planning or building plan approval applications he or she may lodge with the City. This should take place prior to any detailed planning being undertaken and must be in accordance with generally accepted practice.

In determining catchment runoff, the foreseeable ultimate development scenario for the catchment must be considered. All floodlines must be based on the theoretical energy level as opposed to the water surface level.

Permissible landuse / development / activity and applicable conditions within the floodplain are indicated in Table 1: Framework for the assessment of proposals (section 10). Depending on the type of application a range of floodlines must be determined as indicated below:

Floodline (Annual Probability)
2 year (50\%)

Rationale

Determine if required (see Table 1)

Floodline (Annual Probability)	Rationale
20 Year (5%)	Required for parking and other activities
50 Year (2%)	Controls a number of development activities
100 Year (1%)	Controls floor levels and high risk development activities

Note: Other legislation (e.g. NEMA) may require additional floodline determinations and therefore further restrictions may apply.

9.3 Ecological Buffers

Watercourses and wetlands with their adjacent riparian areas and associated fauna and flora must be protected or "buffered" from the impacts of adjacent development or activity. Often referred to as ecological buffers, these protected zones / set backs provide continuous corridors and habitat for flora and fauna. Buffers also provide other benefits such as water quality improvement of point or diffuse sources of pollution, stream bank and erosion protection from the hydrological impacts associated with hardened catchments in urban areas, and space for implementation of appropriate water sensitive urban design elements. In addition buffer areas can provide socio-economic benefits in the form public open space, opportunities for recreation and environmental education / awareness, and enhancement of waterway, visual and property values. In instances where watercourses have been canalized, buffers are still required to aid maintenance and, in some instances, to allow adequate space for possible future restoration activities.

Determination of ecological buffer widths is based on classification of the watercourse or wetland in terms of a recognized national classification system followed by an assessment of the ecological condition and importance of the system (using nationally recognized methods). Watercourses and wetlands with high ecological condition and importance require a wider buffer than those which have been exposed to considerable modification. For watercourses, buffer width may also be adjusted on the basis of the width of the active channel. The buffer is measured from watercourse "top of bank" or outer edge of the wetland (which must be delineated according to nationally accepted guidelines / methodologies e.g. DWAF 1999 and 2005). They have been determined for several of the significant watercourses and certain wetlands within the metropolitan area and vary in width between 10 m and 40 m for watercourses, and up to 75 m for wetlands. A minimum buffer of 10 m is required for concrete canals. Buffers must be adjusted to accommodate wetlands in close association with a watercourse as indicated schematically in Figure 3.

Figure 3: Schematic representation of ecological buffers
Where ecological buffers have not yet been determined for a particular watercourse or wetland, either the City may determine a buffer width by extrapolation if calculated buffer widths are available for similar situations elsewhere, or the developer is required to procure the services of a suitably qualified freshwater ecologist to recommend buffer widths in terms of Council guidelines or approved best practice at own cost and to submit a report in connection therewith together with such planning and building plan approval applications as he or she may submit to the City. This must take place prior to any detailed planning being undertaken.
Site / case specific adjustment of the recommended minimum buffer width may be necessary to allow for exceptional circumstances such as the presence of sensitive habitats, fauna or flora which may require wider buffers for adequate protection; the intensity of adjacent landuse and the nature of anticipated impacts; and the physico-chemical and/or botanical characteristics of the buffer area which may alter the efficacy of the buffer to mitigate against identified impacts.

Permissible landuse / development / activity and applicable conditions within the ecological buffer are indicated in Table 1: Framework for the assessment of proposals (section 10).

9.4 Geomorphological Processes

Cognisance must also be taken of the fact that the beds of many watercourses, particularly on the Cape Flats, are dynamic and prone to erosion, sedimentation and meandering. Where the ecological buffer width and/or floodplain setback requirement is considered an inadequate allowance for these natural processes, additional site-specific studies and setback width may be required in the discretion of the City prior to planning and building plan approval. In these instances, the developer will be required to procure the services of a suitably qualified geomorphologist to determine setback widths at own cost and to submit a report in connection therewith upon request.

9.5 Socio-economic Considerations

Watercourses and wetlands are public resources which have the remarkable potential to stimulate local economies and to break down political, social and economic barriers if managed

and used with this goal in mind. Assessment of developments adjacent to watercourses and wetlands must therefore take cognizance of this potential and promote developments which actively incorporate these systems into the urban fabric of the area.

Without derogating from the general nature of what is stated in this clause, the following specific issues must be considered:

- Water Sensitive Urban Design principles
- Layout / configuration and nature of adjacent development and/or associated activities
- Watercourse / wetland frontage with adjacent development
- Areas of passive and active open space
- Areas for walkways, cycle tracks, picnic facilities
- Aesthetic improvement of degraded systems with appropriate indigenous landscaping
- Public access
- Safety and security
- Economic upliftment
- Environmental education and awareness
- Environmental standards and best practice

Socio-economic considerations such as those listed may be taken into consideration by the City when evaluating planning and building plan approval applications, in its discretion.

9.6 River Corridor

The "River Corridor" comprises the watercourse and/or associated wetlands (as applicable), the floodplain, the ecological buffer and the area required for specific aesthetic, recreational and/or socio-economic needs. This combined area must be managed in an integrated manner which balances the flooding, environmental, social and economic issues (as outlined in the preceding sections 9.2 to 9.5). The City shall strive to develop river corridor plans for all river corridor areas within its jurisdiction, in order to give effect ultimately to this holisitic vision.

An allowance of up to 10 m (measured from the top of bank or outer edge of the wetland) dependent on the current or future maintenance strategy for the watercourse / wetland must be made for maintenance access.

10 Assessment of Proposals and Applications

This policy advocates a merit-based approach to the assessment of proposals and applications pertaining to property near watercourses and wetlands. Any new land use, development, activity or building must be appropriate for the anticipated flood risk and geomorphological process requirements and compatible with the ecological buffer and socio-economic requirements, whilst allowing access for maintenance. Table 1 provides acceptable land use for the various floodplain zones and buffer, as well as specific requirements in instances where conditional approval is considered.

Proposed land-use / development / activities / buildings must be set back beyond the greater of the applicable floodplain, geomorphological and ecological buffer requirements.

Typical proposals requiring input and approval may be divided into three broad categories as described in the following sections.
10.1 Zoning Schemes, Structure Plans and Related Policies

Only land uses considered appropriate within the applicable floodplain and ecological buffer (Refer Table 1) can be contemplated. In addition geomorphological, maintenance as well as social and economic aspects must be considered.

10.2 Land Use Planning Applications

10.2.1 New Development Rights

Developments or activities falling within this category typically require additional and/or amended land use rights to proceed, such as:

- Rezoning
- Sub-division
- Land use departures
- Consent use
- Amendment of plans or conditions of approval

Only land uses, developments or activities considered appropriate within the applicable floodplain and ecological buffer (Refer to Table 1) can be contemplated. In addition geomorphological, maintenance, social and economic aspects must be considered where appropriate.

10.2.2 New Development Rights on Existing Building Footprint

Where no increase in existing building footprint or usage is proposed, as in the case of the redevelopment of an existing building, deviation from this could be considered, where the development or activity is located outside the high hazard zone, subject to compliance with the following:

- Fulfillment of requirements R1 and R2 on Table 1.
- Implementation of appropriate flood protection and mitigation works, including but not limited to the flood proofing of buildings and flood evacuation plans if appropriate. The developer must make adequate provision for future maintenance or operation.
- The registration of a Notarial Deed of Restraint against alienation, which provides that the registered owner shall not be entitled to alienate his/her property without the consent of the City. Such consent shall be withheld until such time as the new owner/purchaser signs an indemnity on terms and conditions acceptable to council. The issuing of a clearance certificate in terms of section 118(1) of the Municipal Systems Act No. 32 of 2000 shall not constitute consent for the abovementioned purpose.
a Endorsement of all Building Plans to the effect that the owner is aware of the consequences of developing within a floodplain and floodlines to be depicted on all applicable building plans.

10.3 Building Plan Applications (Exercising of Existing Development Rights)

Consideration of building plans for structures, submitted in terms of existing development rights, will be conditional on the following:

- Location of buildings on the higher lying portions of the property with floors above the 100year flood level where practically possible, the flood proofing of buildings and flood evacuation plans where necessary.
a No buildings will be permitted within the high hazard zone.
- Limitation of all construction / development activity within the ecological buffer.
- Consideration of measures to mitigate potential maintenance impacts as appropriate.
- The registration of a Notarial Deed of Restraint against alienation, which provides that the registered owner shall not be entitled to alienate his/her property without the consent of the

City. Such consent shall be withheld until such time as the new owner/purchaser signs an indemnity on terms and conditions acceptable to council. The issuing of a clearance certificate in terms of section 118(1) of the Municipal Systems Act No. 32 of 2000 shall not constitute consent for the abovementioned purpose.

- Endorsement of all Building Plans to the effect that the owner is aware of the consequences of developing within a floodplain and floodlines to be depicted on all applicable building plans.

10.4 Development Layouts

In preparing development layouts cognisance must be taken of the various considerations outlined in the previous sections (10.2 and 10.3) as well as Council's Stormwater Management Planning and Design Guidelines for New Developments. Where appropriate, a servitude protecting the floodplain and / or ecological buffer from alteration or obstruction on completion of the development must be registered in favour of Council by the developer at own cost. Where maintenance access is required, this must also be incorporated in the conditions of servitude.

Buildings must be located above the appropriate flood level or buffer zone, or on the upper extremities of the property if the site is entirely located within the relevant floodline, and must front or provide views onto the watercourse or wetland to ensure adequate visual surveillance and integration of the system into the fabric of the development and the City as a whole. Perimeter fencing below the 50-year floodline must be visually permeable from ground level and not adversely affect the free flow of water and movement of aquatic fauna (e.g. palisade fencing).

10.5 Table 1: Framework for the Assessment of Proposals

The land use / development / activity must be set back beyond the greater of the applicable floodplain zone / geomorphological or ecological buffer requirements

$-13-$

- 14 -

Note 1: The effects of the 100-year storm event on all developments and infrastructure, including adjacent and downstream properties, must be evaluated to comply with the above requirements.

Note 2: Watercourses: 10 to 40 m ; Wetlands: up to 75 m
Note 3: Conditional approval may be granted for certain low impact social needs / activities, appropriate landscaping, indigenous planting, pathways

11 Commencement and Implementation

11.1 Commencement Date

Unless otherwise specified, the commencement date for this policy will be the date of adoption by Council

11.2 Existing Policies / Guidelines Repealed

The following existing policies / guidelines are repealed:

Title	Commencement Date	Resolution
Floodplain Management Guidelines: Version 1.0	September 2003	MC37/11/03

12 General

12.1 Statutory Permits and Approvals

Certain developments or activities may be subject to approvals in terms of national legislation by Provincial and National Government Departments.

Examples include, but are not limited to:

- Storing water
- Impeding or diverting the flow of water in a watercourse
- Altering the bed, banks, course or characteristics of a watercourse
- Using water for recreational purposes
- Abstraction
- Land reclamation
- Agricultural cultivation in close proximity to watercourses.

12.2 Indemnity

The degree of flood and/or environmental protection recommended by this policy is considered reasonable for regulatory purposes and is based on engineering and scientific methods of study. Mere compliance with its provisions cannot ensure complete protection from flooding particularly from high order events or reduced environmental impact and must therefore not be construed as a warranty.

This policy shall not create liability on the part of the City of Cape Town or any officer thereof, for any damage that may result from reliance thereon.

12.3 Copyright

All rights reserved by the City of Cape Town, South Africa. No part of this document may be reproduced in any form without the written permission of the City of Cape Town, with the exception of photocopying for educational purposes.

12.4 References

Flood Risk Reduction Measures, Alexander WJR, Department of Civil Engineering, University of Pretoria, April 2000

Development Control Guidelines in Floodprone Areas (Prepared for the former Cape Metropolitan Council), VKE Consulting Engineers (Pty) Ltd in association with Barker and Louw Town and Regional Planners, Dr J. Neethling (Environmental Specialist), Prof A. Rooseboom (Hydraulics and Hydrology Specialist) Du Plessis and Hofmeyer Attorneys, Dr C. Brown (Freshwater Ecologist), June 2000

National wetland inventory - development of a wetland classification system for South Africa. WRC REPORT: KV 174/06 Ewart-Smith, J.L., Ollis, D.J., Day, J.A. and Malan, H.L. 2006.

River and vlei assessment and monitoring in the CMA - revisiting and refining the river importance and sensitivity maps. Southern Waters, 2002.

Resource Directed Measures for Protection of Water Resources: Wetland Ecosystems. Appendix W6: Guidelines for the delineation of wetland boundary and wetland zones. Editor: H. Mackay. Department of Water Affairs and Forestry. 1999.

A practical field procedure for identification and delineation of wetlands and riparian areas. Department of Water Affairs and Forestry 2005.

Departemint Paile \& Stormwater

Opvangsgebied-, stormwater-enrivierbestuurstak

Beleid oor vloedvlakte-en rivierkorridorbestuur

Die balansering van vloedgevaar, ekologiese en sosio-ekonomiese oorwegings by ontwikkelings naby waterlope en vleilande

Weergawe 2.1
Goedgekeur deur die raad 27 Mei 2009
C 58/05/09

(Voorheen getiteld: Riglyne vir vloedvlaktebestuur)

Inhoudsopgawe

1 Aanhef 1
2 Omskrywings 1
3 Inleiding 2
4 Wetgewende raamwerk en mandaat 3
4.1 Nasionaal 3
4.2 Provinsiaal 3
4.3 Stad Kaapstad 3
5 Beleidsgronde 4
6 Beleidstelling 5
7 Bestek en toepassing 5
8 Oogmerke 5
9 Beplannings-, veiligheids-, omgewings- en sosio-ekonomiese oorwegings 6
9.1 Planne / sektorale planne 6
9.2 Vloedbestuur en openbare veiligheid6
9.2.1 Vloedlynvasstelling 8
9.3 Ekologiese buffers 8
9.4 Geomorfologiese prosesse 9
9.5 Sosio-ekonomiese oorwegings 10
9.6 Rivierkorridor 10
10 Beoordeling van voorstelle en aansoeke 10
10.1 Soneringskemas, struktuurpanne en verwante beleid 11
10.2 Grondgebruikbeplanningsaansoeke 11
10.3 Bouplanaansoeke (uitoefening van bestaande ontwikkelingsregte) 11
10.4 Ontwikkelingsuitlegte 12
10.5 Tabel 1: Raamwerk vir die beoordeling van voorstelle 13
11 Inwerkingtreding en -stelling 16
11.1 Datum van inwerkingtreding 16
11.2 Bestaande beleid/riglyne herroep 16
12 Algemeen 16
12.1 Statutère permitte en goedkeurings 16
12.2 Vrywaring 16
12.3 Kopiereg 16
12.4 Verwysings 16

1 Aanhef

Dit is toenemend ' n wêreldsiening dat waterlope en vleilande, hetsy natuurlik of mensgemaak, ' n integrerende deel van stormwaterbestuurstelsels uitmaak, belangrik is vir die volhoubaarheid van stede se waterekologie, en ' n noodsaaklike element is by die herstel van stedelike weefsel deur die voorsiening van sowel ontspannings- as sosio-ekonomiese geleenthede aan alle inwoners.
' n Goed bestuurde waterloop/vleiland is ' n waardevolle hulpbron vir die verbetering van die lewensgehalte in en skoonheid van ' n stedelike gebied, en hou voordele vir openbare gesondheid, ontspanning en ekonomiese groei in. Dit is veral belangrik in die lig van veranderende weerpatrone en die verwante plaaslike, nasionale en internasionale strategieë gemik op volhoubaarheidskwessies.

Hierdie beleidsdokument is ' n versterking van die vorige riglyne vir vloedvlaktebestuur (weergawe 1.0) van September 2003. Verskeie verbeteringe is aangebring om die beleidsbeginsels met korporatiewe strategiese doelwitte te versoen. Met inagneming van die vloedregime, water- en oewer-ekologie sowel as sosio-ekonomiese faktore, sit dit die prosedure vir ontwikkelingsbestuur langs waterlope en vleilande uiteen.

2 Omskrywings

In hierdie beleid, tensy uit die samehang anders blyk, beteken:-
"ekologiese buffer"' n strook grond aanliggend aan ' n waterloop of vleiland, wat vir die beskerming en versterking van dié ekosisteme nodig is;
"grond" die laagste binnevlak van 'n vertrek, motorhuis of kelder waartoe diegene in ' n gebou toegang het;
"herhalingsinterval" of "H1" die gemiddelde interval in jaar tussen reënval- en oorstromingsvoorvalle wat dieselfde of erger is as ' n bepaalde hewigheidsgraad;
"ontwikkeling" enige mensgemaakte verandering aan eiendom, wat insluit, maar nie beperk is nie tot die oprigting of opknapping van geboue of ander strukture, opvulling, plaveiwerk, munisipale dienste, ensovoorts, of die verwante grondvoorbereidingswerk;
"oorskryding" ' n indringing of skending;
"opvul(ling)" die plasing van opvulmateriaal, soos natuurlike sand, slyk, grond of klip, wat beton, sement of ander afvalmateriaal kan insluit, op ' n bepaalde plek om die grondvlak tot ' n gewenste hoogte te lig;
"raad" die Stad Kaapstad;
"rivierkorridor" ' n gemengdegebruik-korridor wat bestaan uit ' n waterloop en/of verwante vleiland, die vioedvlakte, die ekologiese buffer en die gebied wat vir bepaalde estetiese, ontspannings- en/of sosio-ekonomiese behoeftes vereis word. Hierdie gebied moet in sy geheel geïntegreerd bestuur word ten einde oorstromings-, omgewings-, maatskaplike en ekonomiese kwessies te balanseer;
"stormwater" water uit natuurlike neerslag en/of die opgaring daarvan, wat grondwater en fonteinwater wat gewoonlik deur die stormwaterstelsel afgevoer word, sowel as seewater in ' n riviermonding insluit, maar wat water in 'n drink- of afvalwaterverspreidingsnetwerk uitsluit;
"stormwaterstelsel" sowel geboude as natuurlike fasiliteite, wat pype, duikslote en waterlope met hulle gepaardgaande vloedvlaktes insluit, hetsy oor of onder openbare of privaat grond, wat vir die bestuur, opgaar, vervoer, tydelike berging, beheer, monitering, behandeling, gebruik en wegvoer van stormwater gebruik of vereis word;
"struktuur" enige mensgemaakte kenmerk wat aan die grond of aan iets op die grond geheg is, wat insluit, maar nie beperk is nie tot omheinings, mure, berms, oewerwalle, opvulling, opgaartenks, skuilings of geboue;
"vleiland" grond wat tussen aard- en watersisteme geleë is, en waar die watertafel gewoonlik op of na aan die oppervlak is, of waar die grond van tyd tot tyd met vlak water bedek is, welke grond normaalweg plantegroei (sou) onderhou wat tipies in deurweekte grond gedy. Hierdie omskrywing sluit dus in, maar is nie noodwendig beperk nie tot watermassas soos mere, brak vleie, kusmere, riviermondinge, moerasse, kuile, poele, panne en kunsmatig opgedamde water;
"vleilandkartering" die bepaling en merk van die grens van ' n vleiland deur nasionaal aanvaarde riglyne/metodologieë te gebruik;
"vloedlyne" lyne op ' n kaart of skets wat die watervlakke aandui wat ' n vloed met ' n bepaalde herhalingsinterval waarskynlik sal bereik;
"vloedvlakte" die grond wat aan ' n waterloop grens en tot en met die honderdjaarherhalingsinterval vir oorstroming vatbaar is;
"walbopunt" van ' n waterloop, 'n punt wat deur skuurlyne, plantegroeigrense, veranderinge in bedding- en walmateriaal, die teenwoordigheid van slykafsetting weens oorstroming, of skielike hellingveranderinge gekenmerk word;
"waterloop" ' n rivier, stroom, kanaal, sloot, vlei, vleiland, dam of meer waarin of waarheen water gereeld of met tussenposes vloei. ' n Verwysing na ' n waterloop sluit waar van toepassing ook sy bedding en walle in; en
"watersensitiewe stedelike ontwerp" 'n benadering wat dit ten doel stel om te verseker dat ontwikkeling in stedelike gebiede holisties beplan, ontwerp, gebou en in stand gehou word ten einde die negatiewe uitwerking op die natuurlike watersiklus te verminder en waterekosisteme te beskerm.

3 Inleiding

Waterlope en vleilande is ' n integrerende deel van die stormwaterbestuurstelsel, maak ' n belangrike onderdeel van die Stad se biodiversiteitsnetwerk uit, en verteenwoordig ' n noodsaaklike element in die herstel van die Stad se stedelike weefsel deur die voorsiening van sowel ontspannings- as ekonomiese geleenthede.
Hierdie beleid ondersteun die Departement: Paaie en Stormwater se doelwitte wat in die Stad Kaapstad se geïntegreerde-ontwikkelingsplan opgeneem is, naamlik:

- Om die impak van oorstroming op die bestaan van gemeenskappe en streeksekonomieë te verminder
: Om mensegesondheid en natuurlike wateromgewings te beskerm, en ontspanningswatergehalte te verbeter en in stand te hou

Die bestuur van grondgebruik, ontwikkeling of aktiwiteit langs waterlope en vleilande is om die volgende redes belangrik:

- Dit is op lang termyn by verre meer kostedoeltreffend om in gebiede te ontwikkel waar die vloedgevaar ongereeld en die hewigheid van oorstromingsvoorvalle minimaal is, in vergelyking met terugwerkende vloedskadetempering wat gewoonlik uiters duur is en soms rampspoedige gevolge kan hê wanneer vloede die ontwerpvermoë van infrastruktuur oorskry.
- Klimaatsvoorspellings dui op al hoe meer wisseling in die intensiteit en krag van stormvoorvalle, saam met ' n snelle styging in die seevlak. Hierdie onsekerhede hou groot uitdagings vir die bestuur van groot dreineerstelsels in.
- Oorskrydings lei tot ekologiese agteruitgang, verswak dikwels watergehalte, en verhaas die onherroeplike verlies aan ekologiese hulpbronne.
- Aangesien die wysiging van natuursisteme natuurlike water- en geomorfologiese prosesse kan ontwrig, is langtermyntoewyding nodig wat instandhouding betref. Daarom moet stedelike aktiwiteit op so ' n manier bestuur word dat voldoende instandhoudingsaktiwiteite steeds onderneem kan word.
- Dit ondersteun 'n plekgeheue, en werk ontspanningsgenot vir gemeenskappe in die hand.

Hierdie beleid beskryf ' n merietegegronde benadering tot voorstelle vir grondgebruik, ontwikkeling of aktiwiteit naby waterlope en vleilande.

4 Wetgewende raamwerk en mandaat

Grondgebruik, ontwikkeling en verwante aktiwiteite wat deur hierdie beleid geraak word, word ingevolge onderstaande statute en beplanningsraamwerke hanteer.

4.1 Nasionaal

- Wet op Nasionale Bouregulasies \& Boustandaarde, 1997 (Wet 103 van 1977)
- Wet op Bewaring van Landbouhulpbronne (Wet 43 van 1983)
- Nasionale Waterwet (Wet 36 van 1998)
* Wet op Nasionale Omgewingsbestuur (Wet 107 van 1998)
- Rampbestuurwet (Wet 57 van 2002)
- Wet op Nasionale Omgewingsbestuur: Biodiversiteit (Wet 10 van 2004)
n Wet op Nasionale Omgewingsbestuur: Beskermde Gebiede (Wet 57 van 2004)

4.2 Provinsiaal

- Wes-Kaapse Wet op Beplanning \& Ontwikkeling (Wet 7 van 1999) (Dié wet sal van toepassing wees wanneer dit in werking tree.)
- Ordonnansie op Grondgebruikbeplanning (Ordonnansie 15 van 1985)

4.3 Stad Kaapstad

* Geïntegreerde-ontwikkelingsplan (2007/8 tot 2011/12)

Onderstaande doelwitte van die Departement: Paaie en Stormwater is in die Stad Kaapstad se geïntegreerde-ontwikkelingsplan opgeneem:

- Verminder die uitwerking van oorstroming op die bestaan van gemeenskappe en streeksekonomieë
- Beskerm mensegesondheid en natuurlike wateromgewings, en verbeter en hou ontspanningswatergehalte in stand
- Verordening op Stormwaterbestuur (uitgevaardig in September 2005 - PK 6300), waarmee saam dié beleid gelees en geïnterpreteer moet word.
Die Stad se Verordening op Stormwaterbestuur omskryf die stormwaterstelsel as "die opgerigte en natuurlike geriewe, waaronder pype, duikslote, waterlope en hulle meegaande voedpleine, hetsy oor of onder grond in openbare of private besit, wat vir die bestuur, versameling, vervoer, tydelike berging, beheer, monitor, behandeling, gebruik en wegvoer van vloedwater gebruik of vereis word".
Klousule 4 en 5 handel oor die beskerming van die stormwaterstelsel (wat natuurlike en geboude sisteme en die verwante vloedvlaktes insluit) en die voorkoming van vloedgevaar.

Die raad kan dus ingevolge hierdie verordening ontwikkeling in gebiede langs waterlope en vleilande verbied of voorwaardelik toelaat.
Voorts is ' n aantal ander dokumente wat hetsy regstreeks of by implikasie na ontwikkelings- en gebiedsbestuur langs waterlope en vleilande verwys, oor die jare ontwikkel. ' n Paar van die belangrikste dokumente is:

- "Greening the City: Open Sapce and Recreation Plan for Cape Town" (1982), die Stad Kaapstad se plan vir die vergroening van oop en ontspanningsruimtes.
- Die Departement: Paaie en Stormwater se strategie oor opvangsgebied-, stormwater- en rivierbestuur (2002).
- "Biodiversity Strategy" (2003) and "Biodiversity Report" (2008), die Biodiversiteitstrategie en Biodiversiteitsverslag.
- "Coastal Zone Strategy" (2003) and "Coastal Zone Management Review and State of the Coast Report Year 3 " (2006), die Kussonestrategie en die Kussonebestuursoorsig en verslag oor die stand van die kus jaar 3.
" "CMOSS - An Open Space Strategy" (2005), CMOSS - 'n oopruimtestrategie. toekoms.

5 Beleidsgronde

Binne die grense van die Kaapstad-metropolitaanse gebied is die druk om te ontwikkel groot, en dit verg dus omsigtige bestuur om ontwikkeling in gebiede met ' n hoë vloedgevaar te voorkom, die omgewingsintegriteit van waterhulpbronne te beskerm, en te verseker dat toegelate ontwikkeling die skoonheid en karakter van die aanliggende waterlope/vleilande versterk.
Om dit te bereik, is ' n nuwe benadering nodig waardeur ontwerp-, omgewings- en sosioekonomiese elemente as die visie vir ' n bepaalde waterloop-/vleilandsisteem beoordeel en geïntegreer word.

Hierdie beleid beveel in merietegegronde benadering tot voorstelle binne en langs vloedgeteisterde gebiede en omgewingsbuffers aan. Voorts word sosio-ekonomiese oorwegings ook in ag geneem, en behoort enige toegelate ontwikkeling dus aandag te skenk aan die teenwoordigheid van die waterloop/vleiland, en daardeur die stedelike weefsel van die gebied holisties te versterk.

Hierdie beleid is belangrik vir die verwesenliking van die diensuitkomste soos in afdeling 3 hier bo uitgelig, naamlik om die impak van oorstroming op mense en eiendomme te verminder, en mensegesondheid en wateromgewings te beskerm en ontspanningswatergehalte te verbeter en in stand te hou.

6 Beleidstelling

'Om volhoubare ontwikkeling en verwante aktiwiteite binne of langs natuurlike en geboude stormwaterstelsels te verseker, en voorts te verseker dat die moontlike vloedgevaar, omgewingsimpakte én sosio-ekonomiese behoeftes gebalanseerd oorweeg word, sal alle ontwikkelings in hierdie gebiede ooreenkomstig beste praktyk en die vereistes en voorwaardes in hierdie beleid neergelê, beplan en ontwerp word.'

Hierdie beleid ondersteun die diensuitkomste soos in afdeling 3 hier bo uiteengesit, en verseker voorts dat die administratiewe optrede met betrekking tot grondgebruikbeplanningsaansoeke wettig, redelik en prosessueel billik is.

7 Bestek en toepassing

Hierdie beleid is van toepassing op grondgebruik-, ontwikkelings- of bou- of aktiwiteitsvoorstelle langs waterlope of vleilande. Die beginsels met betrekking tot vloedbestuur kan ook op ontwikkeling in die omgewing van formele stormwaterbestuurstelsels toegepas word.

8 Oogmerke

Die oogmerke van hierdie beleid is om ontwikkeling op ' n manier te bestuur wat:

- blootstelling aan vloedgevaar beperk of verminder deur gevaarlike, onekonomiese of onwyse gebruik van vloedvlaktes te verhoed, en daardeur lewens, eiendom en gemeenskapinfrastruktuur te beskerm;
- die natuurlike vloeddravermoë van waterlope en vleilande beskerm;
- die intrinsieke waarde en die omgewingsgoedere en -dienste wat waterlope, vleilande en verwante oewergebiede en vloedvlaktes bied, te beskerm en te versterk;
- die voordelige integrasie van waterlope by die stedelike landskap in die hand werk deur ' n esteties bevredigende openbare hulpbron te skep, wat uiteindelik die maatskaplike en ekonomiese opheffing van gemeenskappe langs waterlope en vleilande moontlik sal maak;
- ' n doeltreffende besluitnemingsinstrument vir amptenare, ontwikkelaars en konsultante bied deur ' n mate van voorspelbaarheid met betrekking tot ontwikkelingsaansoeke langs waterlope/rivierkorridors en vleilande te skep; en
a volhoubare ontwikkeling uit ' n ontwerp-, omgewings- en sosio-ekonomiese perspektief ondersteun.

9 Beplannings--, veiligheids-, omgewings- en sosio-ekonomiese oorwegings

Grondgebruik, ontwikkeling of aktiwiteite naby waterlope en vleilande moet geskik wees vir die verwagte graad van vloedgevaar, terwyl dit ook die gepaardgaande omgewingsimpak beperk en ' n plekgeheue en stedelike vorm behou. Die afdelings hieronder sit die beplannings-, veiligheids-, omgewings- en sosio-ekonomiese aspekte uiteen wat in die beoordeling van aansoeke oorweeg moet word, soos daar in afdeling 7 hierbo bedoel word.

9.1 Planne / sektorale planne

Toepaslike vereistes en aanbevelings in verskeie planne/verwante dokumente moet in ag geneem word. Die verskillende kategorieë planne wat, waar beskikbaar, geraadpleeg behoort te word, word hier onder gelys. Gesonde ontwerp- en omgewingsoordeel behoort in die afwesigheid van hierdie gidsplanne gebruik te word.

- Die Departement: Paaie en Stormwater se strategie oor opvangsgebied-, stormwater- en rivierbestuur 2002-2007
- Opvangsgebied- \& rivierbestuursplan
- Stormwatermeesterplan

9.2 Vloedbestuur en openbare veiligheid

Waterlope en hulle verwante vloedvlaktes kan onder vloedomstandighede groot volumes water dra. Vir die doeleindes van hierdie riglynbeleid, word 'n vloedvlakte omskryf as die area wat vatbaar is vir oorstroming tot en met die 100 jaar-vloed, soos in Figuur 1 hieronder aangedui.

Die hoegevaarsone binne ' n vloedvlakte, gegrond op die ontleding van die verwagte vloeieienskappe van die 100 jaar-vloed, word grafies in Figuur 2 hieronder aangedui. Die vermoë om deur die water te loop of voertuigtoegang te verkry, sowel as die stabiliteit van strukture soos wonings of grensmure word onder hierdie omstandighede as ernstig gekompromitteer beskou. Geen nuwe of bykomente regte of die uitoefening van bestaande ontwikkelingsregte sal toegestaan word vir eiendomme wat in die hoëgevaarsone gelee is nie.

Die toegelate omvang en aard van grondgebruik, ontwikkeling of aktiwiteite in vloedvlaktes moet in die belang van openbare veiligheid aan streng beoordeling en beheer onderwerp word. In die besonder word die versperring van vrye watervloei binne die 20 jaar-vloedlyngebied hoegenaamd nie toegelaat nie. Tussen die 50 jaar- en 100 jaar-vloedlyne kan die meeste ontwikkelings of aktiwiteite toegelaat word, onderhewig aan sodanige voorwaardes na gelang die Stad na eie goeddunke kan oplê, terwyl ontwikkelings met bepaalde ontruimings- of noodreaksiekwessies sowel as hoërisiko-ontwikkelings slegs bo die 100 jaar-vloedlyn toegelaat sal word (sien Tabel 1).

Enige voorgestelde ontwikkeling of herontwikkeling binne die vloedvlakte moet deur 'n verslag deur 'n geregistreerde ingenieur gesteun word om te verseker dat enige nuwe of bestaande struktuur die kragte en effekte van vloedwater kan weerstaan (sien vereiste R1 in Tabel 1). As bouplanne ten opsigte van voorgestelde geboue binne die vloedvlakte voorgelê word, en sodanige verslag nie voorheen voorgelê is nie, moet die laasgenoemde by die bouplanne ingesluit word.

Figuur 1: Skematiese voorstelling van vloedvlakte, met waterloop en belangrike vloedlyne daarop uitgebeeld.

Figuur 2: Vloedgevaarsones

9.2.1 Vloedlynvasstelling

Waar vloedlyne nog nie voorheen vir ' n bepaalde plek vasgestel is nie, sal daar van die ontwikkelaar verwag word om op eie koste die dienste van ' n toepaslik gekwalifiseerde en geregistreerde ingenieur te verkry om sodanige vasstelling te doen, en om 'n verslag daaroor in te dien tesame met sodanige aansoeke om goedkeuring van beplanning of bouplanne wat hy/sy by die Stad kan indien. Dit behoort te geskied voordat enige uitvoerige beplanning ' n aanvang neem, en moet ooreenkomstig algemeen aanvaarde praktyk gebeur.

In die bepaling van die afloop in die opvangsgebied, moet die voorsienbare maksimumontwikkelingscenario vir die opvangsgebied in ag geneem word. Alle vloedlyne moet gegrond word op die teoretiese energievlak teenoor die vlak van die wateroppervlakte.

Toelaatbare grondgebruike/ontwikkeling/aktiwiteite en toepaslike voorwaardes in die vloedvlakte word in Tabel 1, "Raamwerk vir die beoordeling van voorstelle" (afdeling 10), aangedui. Afhangende van die soort aansoek, moet ' n reeks vloedlyne soos hier onder aangedui, vasgestel word:

Vloedlyn (jaarlikse waarskynlikheid)

2 jaar (50\%)
20 jaar (5 \%)
50 jaar (2\%)
100 jaar (1\%)

Motivering
Bepaal, indien vereis (sien tabel 1)
Vereis vir parkering en ander aktiwiteite
Beheer ' n aantal ontwikkelingsaktiwiteite
Beheer grondvlakke en hoërisiko-ontwikkelingsaktiwiteite

Let wel: ander wetgewing (bv. die Wet op Nasionale Omgewingsbestuur) kan dalk bykomende vloedlynbepalings vereis, en bykomende beperkings kan dus van toepassing wees.

9.3 Ekologiese buffers

Waterlope en vieilande met hulle aanliggende oewergebiede en verwante diere- en plantelewe het ' n 'buffer' teen die impak van aanliggende ontwikkeling of aktiwiteit nodig. Hierdie beskermde sones/inspringings, wat dikwels ekologiese buffers genoem word, verteenwoordig ononderbroke korridors en habitat vir plante en diere. Buffers hou ook ander voordele in, soos watergehalteverbetering by punt- of verspreide besoedelingsbronne, stroombank- en erosiebeskerming teen die hidrologiese effek wat met geharde opvangsgebiede in stedelike omgewings gepaardgaan, en ruimte vir die inwerkingstelling van toepaslike watersensitiewestedelikeontwerpelemente. Voorts kan buffergebiede ook sosio-ekonomiese voordele in die vorm van openbare oop ruimtes, geleenthede vir ontspanning en omgewingsopvoeding/bewusmaking, en die verhoging van waterlope se visuele en eiendomswaardes inhou. In gevalle waar waterlope gekanaliseer is, word buffers steeds vereis om instandhouding moontlik te maak en om, in sommige gevalle, voldoende ruimte vir moontlike toekomstige herstelaktiwiteite te laat.

Die vasstelling van ekologiese-bufferbreedtes berus op die klassifikasie van die waterloop of vleiland ingevolge ' n erkende nasionale klassifikasiestelsel, gevolg deur ' n beoordeling van die ekologiese toestand en belang van die sisteem (deur van nasionaal erkende metodes gebruik te maak). Waterlope en vleilande in ' n goeie ekologiese toestand en van groot belang vereis ' n breër buffer as dié wat aan beduidende wysigings blootgestel is. Vir waterlope word bufferbreedtes ook op grond van die breedte van die aktiewe kanaal aangepas. Die buffer word van die waterloop se walbopunt, of die buiterand van die vleiland gemeet (wat ooreenkomstig nasionaal aanvaarde riglyne/metodologieë gekarteer moet wees, bv. "DWAF" 1999 en 2005. Hierdie punte en rande is vir verskeie van die belangrike waterlope en sekere vleilandgebiede in die metropolitaanse gebied vasgestel, en wissel in breedte tussen 10 m en 40 m vir waterlope, en tot en met 75 m vir vleilande. ' n Minimum buffer van 10 m word vir betonkanale vereis. Buffers kan ook aangepas word om voorsiening te maak vir gevalle waar vleiland en ' n waterloop in tandem is, soos skematies in Figuur 3 aangedui.

Waar ekologiese buffers nog nie voorheen vir ' n bepaalde waterloop of vleiland vasgestel is nie, kan of die Stad 'n bufferbreedte deur middel van ekstrapolering bepaal as berekende bufferbreedtes vir soortgelyke situasies elders beskikbaar is, of daar sal van die ontwikkelaar verwag word om op eie koste die dienste van 'n toepaslik gekwalifiseerde varswater-ekoloog te verkry om bufferbreedtes ingevolge raadsriglyne of goedgekeurde beste praktyk aan te beveel, en om 'n verslag daaroor in te dien tesame met sodanige aansoeke om goedkeuring van beplanning of bouplanne wat hy/sy by die Stad kan indien. Dit moet geskied voordat enige uitvoerige beplanning ' n aanvang neem.

Terrein-/gevalspesifieke aanpassing van die aanbevole minimum bufferbreedte kan nodig wees om vir uitsonderlike omstandighede voorsiening te maak, soos die teenwoordigheid van sensitiewe habitat; diere- of plantelewe wat breër buffers vir voldoende beskerming vereis; die intensiteit van aanliggende grondgebruik, en die aard van die verwagte impak daarvan; en die fisiko-chemiese en/of botaniese kenmerke van die buffergebied wat die doeltreffendheid van die buffer teen ' n bepaalde impak kan beïnvloed.

Toelaatbare grondgebruike/ontwikkeling/aktiwiteite en toepaslike voorwaardes in die ekologiese buffer word in Tabel 1, "Raamwerk vir die beoordeling van voorstelle" (afdeling 10) aangedui.

Figuur 3: Skematiese voorstelling van ekologiese buffers

9.4 Geomorfologiese prosesse

Dit is ook belangrik om daarop te let dat die beddings van baie waterlope, veral op die Kaapse Vlakte, dinamies is en geneig is tot erosie, afsetting en kronkeling. Waar die vereiste ekologiese-bufferbreedte en/of vloedvlakte-inspringing as ontoereikend vir hierdie natuurlike prosesse beskou word, kan bykomende terreinspesifieke studies en inspringingsbreedte dalk na goeddunke van die Stad vereis word voordat beplanning en bouplanne goedgekeur word. In so ' n geval sal daar van die ontwikkelaar vereis word om op eie koste die dienste van ' n toepaslik gekwalifiseerde geomorfoloog te verkry om inspringingsbreedtes te bepaal en op versoek 'n verslag daaroor voor te lê.

9.5 Sosio-ekonomiese oorwegings

Waterlope en vleilande is openbare hulpbronne met die merkwaardige potensiaal om plaaslike ekonomieë te stimuleer en om politieke, maatskaplike en ekonomiese versperrings uit die weg te ruim indien dit met dié doel voor oë bestuur en gebruik word. Die beoordeling van ontwikkelings langs waterlope en vleilande moet dus hierdie potensiaal in ag neem en ontwikkelings ondersteun wat hierdie sisteme daadwerklik by die stedelike weefsel van die gebied insluit.

Sonder om afbreuk te doen aan die algemene aard van dit wat in dié klousule gemeld word, moet die volgende spesifieke kwessies oorweeg word:

- Watersensitiewe-stedelikeontwerpbeginsels
- Uitleg/struktuur en aard van aanliggende ontwikkeling en/of verwante aktiwiteite
a Uitsig oor waterloop/vleiland vanaf aanliggende ontwikkeling
- Areas met passiewe en aktiewe oop ruimte
- Areas met wandelpaaie, fietspaaie, piekniekfasiliteite
* Estetiese verbetering van verswakte sisteme met toepaslike inheemse terreinverfraaiing
- Openbare toegang
- Veiligheid en sekuriteit
- Ekonomiese opheffing
- Omgewingsopvoeding en -bewusmaking
- Omgewingstandaarde en beste praktyk

Sosio-ekonomiese oorwegings soos dié wat gelys is, kan deur die Stad na eie goeddunke in aanmerking geneem word wanneer aansoeke om goedkeuring van beplanning en bouplanne geëvalueer word.

9.6 Rivierkorridor

Die rivierkorridor bestaan uit die waterloop en/of verwante vleiland (waar van toepassing), die vloedvlakte, die ekologiese buffer en die gebied wat vir bepaalde estetiese, ontspannings- en/of sosio-ekonomiese behoeftes benodig word. Hierdie gebied moet in sy geheel geïntegreerd bestuur word ten einde vloed-, omgewings-, maatskaplike en ekonomiese kwessies te balanseer (soos in die voorafgaande afdelings 9.2 tot 9.5 uiteengesit is). Die Stad streef daarna om rivierkorridorplanne vir alle rivierkorridorgebiede binne sy regsgebied te ontwikkel ten einde uiteindelik aan hierdie holistiese visie uitvoering te gee.

Afhangende van die huidige of toekomstige instandhoudingstrategie vir die waterloop/vleiland, moet tot en met 10 m (gemeet van bo-op die oewer of die buitenste rand van die vleigebied), waar vereis, vir instandhoudingstoegang toegelaat word.

10 Beoordeling van voorstelle en aansoeke

Hierdie beleid beveel ' n merietegegronde benadering tot die beoordeling van voorstelle en aansoeke met betrekking tot eiendomme naby waterlope en vleilande aan. Enige nuwe grondgebruik, ontwikkeling of aktiwiteit moet egter met die verwagte vloedgevaar- en geomorfologiese-prosesvereistes strook en aan die ekologiese-buffer- en sosio-ekonomiese vereistes voldoen, terwyl voldoende toegang vir instandhouding ook, waar vereis, toegelaat moet word. Tabel 1 sit aanvaarbare grondgebruike vir die verskillende vloedvlaktesones en buffers uiteen, sowel as bepaalde vereistes in gevalle waar voorwaardelike goedkeuring oorweeg word.

Voorgestelde grondgebruike/ontwikkeling/aktiwiteite/geboue moet verder inspring as die grootste van hetsy die toepaslike vloedvlakte-, geomorfologiese of ekologiese-buffervereiste.

Tipiese voorstelle wat kommentaar en goedkeuring verg, kan in drie breë kategorieë, soos in onderstaande afdelings beskryf, verdeel word.

10.1 Soneringskemas, struktuurpanne en verwante beleid

Slegs grondgebruike wat as geskik vir die toepaslike vloedvlakte en ekologiese buffer beskou word (sien Tabel 1) kan oorweeg word. Voorts moet geomorfologiese, instandhoudings- sowel as maatskaplike en ekonomiese aspekte in ag geneem word.

10.2 Grondgebruikbeplanningsaansoeke

10.2.1 Nuwe ontwikkelingsregte

Ontwikkeling of aktiwiteite in hierdie kategorie vereis tipies bykomende en/of gewysigde grondgebruikregte om voort te gaan, byvoorbeeld

- hersonering;
a onderverdeling;
- grondgebruikafwykings;
- toestemmingsgebruik; en
wysiging van planne of goedkeuringsvoorwaardes.
Slegs grondgebruike wat as geskik vir die toepaslike vloedvlakte en ekologiese buffer beskou word (sien Tabel 1) kan oorweeg word. Voorts moet geomorfologiese, instandhoudings- sowel as maatskaplike en ekonomiese aspekte in ag geneem word.

10.2.2 Nuwe ontwikkelingsregte op bestaande gebouvoetspoor

Waar geen toename in die bestaande gebouvoetspoor of -gebruik voorgestel word nie, soos in die geval van die herontwikkeling van ' n bestaande gebou, kan afwyking oorweeg word waar die ontwikkeling of aktiwiteit buite die hoëgevaarsone geleë is, onderworpe aan voldoening aan die volgende:

- Voldoening aan vereistes R1 en R2 in Tabel 1.
- Inwerkingstelling van toepaslike vloedbeskermings- en -temperingswerk, wat insluit, maar nie beperk is nie tot die waterdigting van geboue, kompenserende grondwerk, en vloedontruimingsplanne, na gelang van omstandighede. Die ontwikkelaar moet voldoende voorsiening vir toekomstige instandhoudings- of bedryfswerk maak.
- Die registrasie van ' n notariële beperkingsakte teen vervreemding, wat bepaal dat die geregistreerde eienaar nie daarop geregtig sal wees om sy/haar eiendom sonder die Stad se toestemming te verkoop nie. Sodanige toestemming sal weerhou word tot tyd en wyl die nuwe eienaar/koper 'n vrywaring onderteken volgens bepalings en voorwaardes wat vir die Stad aanvaarbaar is. Die uitreiking van 'n klaringsertifikaat ingevolge artikel 118(1) van die Wet op Munisipale Stelsels, Wet 32 van 2000, geld nie as toestemming vir bogenoemde doel nie.
a Endossering van alle bouplanne ten effekte dat die eienaar bewus is van die gevolge van ontwikkeling in ' n vloedvlakte, en vloedlyne moet op alle toepaslike bouplanne aangedui word.

10.3 Bouplanaansoeke (uitoefening van bestaande ontwikkelingsregte)

Oorweging van struktuurbouplanne wat ingevolge bestaande ontwikkelingsregte ingedien word, geskied voorwaardelik op grond van die volgende:

- Ligging van geboue op die hoërliggende gedeeltes van die eiendom, met vloere bo die 100 jaar-vloedvlak, waar prakties moontlik, die vloedwaterdigting van geboue en vloedontruimingsplanne waar nodig.
* Geen geboue word binne die hoëgevaarsone toegelaat nie.
- Beperking van alle bou-/ontwikkelingsaktiwiteit binne die ekologiese buffer.
- Oorweging van maatreëls om, waar toepaslik, potensiële instandhoudingsimpak te temper.
- Die registrasie van ' n notarielle beperkingsakte teen vervreemding, wat bepaal dat die geregistreerde eienaar nie daarop geregtig sal wees om sy/haar eiendom sonder die Stad se toestemming te verkoop nie. Sodanige toestemming sal weerhou word tot tyd en wyl die nuwe eienaar/koper ' n vrywaring onderteken volgens bepalings en voorwaardes wat vir die Stad aanvaarbaar is. Die uitreiking van ' n klaringsertifikaat ingevolge artikel 118(1) van die Wet op Munisipale Stelsels, Wet 32 van 2000, geld nie as toestemming vir bogenoemde doel nie.
- Endossering van alle bouplanne ten effekte dat die eienaar bewus is van die gevolge van ontwikkeling in ' n vloedvlakte, en vloedlyne moet op alle toepaslike bouplanne aangedui word.

10.4 Ontwikkelingsuitlegte

In die voorbereiding van ontwikkelingsuitlegte, behoort die verskillende kwessies in die vorige afdelings (10.2 en 10.3), sowel as die raad se beplannings- en ontwerpriglyne vir stormwaterbestuur by nuwe ontwikkelings in ag geneem te word. Waar toepaslik, moet die ontwikkelaar op eie koste ' n serwituut, wat die vloedvlakte en/of ekologiese buffer teen wysiging of versperring by voltooiing van die ontwikkeling beskerm, ten gunste van die raad registreer. Waar instandhoudingstoegang vereis word, behoort dit by die voorwaardes van die serwituut ingesluit te word.

Geboue moet bo die toepaslike vloedvlak of buffersone of op die hoogste gedeeltes van die eiendom geleë wees, as die perseel in sy geheel binne die toepaslike vloedlyn geleë is, en moet uitkyk of ' n uitsig bied oor die waterloop of vleiland om voldoende visuele waarneming en integrasie van die sisteem by die weefsel van die ontwikkeling en die Stad in sy geheel te verseker. Grensomheining onder die 50 jaar-vloedlyn moet visueel deurdringbaar wees van grondvlak, en mag nie die vrye vloei van water en beweging van waterfauna negatief beïnvloed nie (byvoorbeeld ' n spitspaalheining).

Arseringsleutel	
Kleurkode	Eeskrywing
Ongearseer	Toegelaat
Y.	Voorwaardelik loegelaat
	Nie toegelaat nie

Bykomende-vereistesleutel	
Kode	Vereiste
R1	Die ontwikkelaar moet die clenste van ' n geregistreerde ingenieur verkry om tot almal se bevrediging te toon en te sertifiseer dat * die aktiwiteitontwikkeling nie die voedgevaar vir ander eiendomseienaars beduidend verhoog of vioedgedrag of die stabiliteit van rivierkanale negatief raak nie; en * enige struktuur die kragte en tuitwerking van 'n stroom vloedwater kan weerstaan, wat wrywing teen fondasies, puinkragte en hefvermoè insluit.
R2	Vloere bo 1:100 jaar-vloedviak. Kelders (vir nie-bewoonbare doeleindes) moet tot by die $1: 50$ jaar-vloedviak waterdig gemaak word.
R3	Vloere bo 1:50 jaar-vloedvlak.
R4	Die ontwikkelaar moet die dienste van 'n geregistreerde omgewingskundige (waterekoloog) verkry om die ekologiese buffer te bepaal (as dit nie beskikbaar is nie) en om tot almal se bevrediging te toon en te sertifiseer dat: - die aktiwiteit/ontwikkeling nie 'n negatiewe impak op die huidige toestand van die waterloop of vieiland sal hē nie; OF - die aktiwiteitontwikkeling die huidige toestand van die waterloop of vleiland sal verbeter.

Die grondgebruik/ontwikkeling/aktiwiteit moet verder inspring as die grootste van hetsy die toepaslike vloedvlaktesone-, geomorfologiese of ekologiese-buffervereistes

Grondgebruik/ontwikkeling/aktiwiteit		Vereistes en voorwaardes							
		Vloedvlaktesone (vloedherhalingsinterval in jaar)						Ekologiese buffer (breedte in meter)	
Kategorie	Tipiese voorbeelde	<2	2-20	20-50	50-100	$\begin{gathered} >100 \\ (\text { Nota } 1) \end{gathered}$	Verduidelikende notas	Tot 75 m (Nota 2, 3)	Verduidelikende notas
Nywerheidsontwikkeling	Lig, algemeen, hoé risiko			R1.					
	Ekstraktief (mynwese)				R1				
Sakeontwikkeling	Algemeen				P2				
	Kommersieel (sentrale sakekern)								
	Diensstasies								
Residensiële ontwikkeling	Formeel				R2				
	Informeel			15-5ive					
Gemeenskapsen openbare fasiliteite	Hospitale, klinieke, verpleeginrigtings, ouetehuise								

Grondgebruik/ontwikkeling/aktiwiteit		Vereistes en voorwaardes							
		Vloedvlaktesone (vloedherhalingsinterval in jaar)						Ekologiese buffer (breedte in meter)	
Kategorie	Tipiese voorbeelde	<2	2-20	20-50	50-100	$\begin{gathered} >100 \\ (\operatorname{Nota} 1) \end{gathered}$	Verduidelikende notas	Tot 75 m (Nota 2, 3)	Verduidelikende notas
Landbou	Grondbewerking, vrywei-veeteelt	F1		Rt			Onderworpe aan regulasies van Wet op Bewaring van Landbouhulpbronne ("CARA")		
	Landbouverwerking/nywerheid				R1. 72				
	Voerkampe, varkboerdery en batteryboerery			$\pi 1$	$\mathrm{R} 1$		Onderworpe aan regulasies van Wet op Bewaring van Landbouhulpbronne ("CARA")		
Oorde	Hotelle, vakansieoorde en strandhuise				R2				
	Karavaan- en kampeerterreine		R1	P3			Alle ablusiefasiliteite moet bo die 20 jar-vloedlyn geleë wees	$\mathrm{R} 4$	
	Paaie en spoorweë bo natuurlike grondvlak		R1	R	R1				
Vervoerstelsels	Modale wisselaars, busdepots, spoorwegstasies								
	Parkeerterreine			R1					
Walbeskermingswerk, stroomomleidingstrukture en grondwerk	Keermure, rigmure, oewerwalle	R1	$\mathrm{F1}$	$\mathrm{R1}$					
	Damme, keerwalle, brûe	$R 1$	$\mathrm{F} 1$	R	R1	P1	Dambreekontleding waar vereis ingevolge Nasionale Waterwet	R4	
	Opvulling				$\mathrm{R} 1$	R_{1}	In uitsondertike omstandighede kan geringe 'afvlakking' van die 50 jaar/100 jaar-vloedlyn oorweeg word, mits gelykstaande kompensasiestadiumbergingsvolume binne die ontwikkelingsgebied voorsien word.		

Nota 1: Die uitwerking van die 100 jaar-stormvoorval op alle ontwikkelings en infrastruktuur, wat aanliggende kenmerke en kenmerke laer af insluit, moet beoordeel word om aan bostaande vereistes te voldoen.
Nota 2: Waterlope: 10 tot 40 m ; vieiland: tot en met 75 m
Nota 3: Voorwaardelike goedkeuring kan vir sekere lae-impak maatskaplike behoeftes/aktiwiteite, toepaslike terreinverfraaingg, inheemse aanplanting, voetpaaie, ensovoorts toegestaan word.

11 Inwerkingtreding en -stelling

11.1 Datum van inwerkingtreding

Tensy anders aangedui, sal die datum van inwerkingtreding vir hierdie beleid die datum wees waarop die raad die beleid aanvaar.

11.2 Bestaande beleid/riglyne herroep

Onderstaande bestaande beleid/riglyne word hiermee herroep:

Titel	Datum van inwerkingtreding	Resolusie
Riglyne vir vloedvlaktebestuur, weergawe 1.0	September 2003	MC37/11/03

12 Algemeen

12.1 Statutêre permitte en goedkeurings

Sekere ontwikkelings of aktiwiteite kan onderworpe wees aan goedkeuring deur provinsiale en nasionale staatsdepartemente ingevolge nasionale wetgewing.

Voorbeelde sluit in, maar is nie beperk daartoe beperk nie

- Die berging van water
- Die belemmering of omleiding van watervloei in ' n waterloop
- Wysiging van die bedding, walle, loop of kenmerke van ' n waterloop
- Watergebruik vir ontspanningsdoeleindes
- Onttrekking
- Grondherwinning
- Landboubewerking naby waterlope

12.2 Vrywaring

Die graad van vloed- en/of omgewingsbeskerming wat deur hierdie beleid aanbeveel word, word as redelik vir reguleringsdoeleindes beskou en is op ingenieurs- en wetenskaplike studiemetodes gegrond. Blote nakoming van die bepalings van die beleid kan egter nie volkome beskerming teen corstroming verseker nie, veral nie teen hoë-ordevoorvalle of 'n verminderde omgewingsimpak nie, en die beleid behoort daarom op geen manier as ' n waarborg beskou te word nie.

Nóg die Stad Kaapstad nóg enige Stad-amptenaar sal vir enige skade wat uit die toepassing of navolging van hierdie beleid kan spruit, aanspreeklik wees.

12.3 Kopiereg

Die Stad Kaapstad, Suid-Afrika, behou alle regte voor. Geen deel van hierdie dokument mag in enige formaat sonder die skriftelike toestemming van die Stad Kaapstad gereproduseer word nie, met die uitsondering van afskrifte vir opvoedkundige doeleindes.

12.4 Verwysings

Flood Risk Reduction Measures, Alexander WJR, Departement Siviele Ingenieurswese, Universiteit van Pretoria. April 2000.

Development Control Guidelines in Floodprone Areas (voorberei vir die voormalige Kaapse metropolitaanse raad), VKE Raadgewende Ingenieurs (Edms.) Bpk. in samewerking met Barker en Louw Stads- en Streeksbeplanners, dr. J. Neethling (omgewingspesialis), prof. A. Rooseboom (hidroulika- en hidrologiespesialis), Du Plessis en Hofmeyer Prokureurs, en dr. C. Brown (varswaterekoloog). Junie 2000.

National wetland inventory - development of a wetland classification system for South Africa. Verslag van die Waternavorsingskommissie: KV 174/06. Ewart-Smith, J.L., Ollis, D.J., Day, J.A. en Malan, H.L. 2006.

River and vlei assessment and monitoring in the CMA - revisiting and refining the river importance and sensitivity maps. Southern Waters. 2002.

Resource Directed Measures for Protection of Water Resources: Wetland Ecosystems. Bylaag W6: Guidelines for the delineation of wetland boundary and wetland zones. Redakteur: H. Mackay. Departement van Waterwese en Bosbou. 1999

[^0]: 1.3 Emmikdens

 It is important to note that this investigation is based on the City's latest hydrologic models - SRK (2012).
 Aurecon has previously highlighted concerns about the correctness of this hydrological modelling of
 various sub-catchments within the catchment area of the Salt River and has made proposals for
 addressing potential shortcomings. Never the tess Aurecon is of the opinion that the Two-Dimensional
 (2D) models that have been configured for this study provide a reasonable basis for making informed
 judgements regarding the flood levels for both the pres- and post-development of the River Club site
 flooding and adjacent areas. This is because the water levels and flow paths determined from the
 modelling correspond closely with observations by experienced Aurecon employees who visited the
 sites during major flooding events over the last 15+ years.

[^1]: The 10 HEC-RAS Model created from a bathymetric survey undertaken as part of the RH-DHV The 1D HEC-RAS Model crealed from
 (2017) study was provided by the City.

[^2]: For both models the comparative increases in water levels between pre- and post-development
 were effectively the same.

[^3]: 4.2.7 Hazard Analysis

 The hazard analysis indicates thal currently a significant portion of the River Club Sile falls within the
 2009a) development would not be allowed. Should the development be elevated out of the flood plain--
 as is proposed - and there be adequate, safe access the development would no longer fall willin the
 and River Corridor Management Polligy' (CSRM, $2000 a$) which prohibits new or existing rights within fhe
 High Hazard zone - and considers 'Filing' as development.

[^4]: The insignificant changes in the extent of inundation for minor storm events that may have an impact

[^5]: WATER a SANITATION HEAD OFFICE
 8 VOORTREKKER ROAD. CNR OF MIKE PIENAAR BOULEVARD, BELLVILLE 7535 PRIVATE BAG X98, BELLVILLE. 7535
 www.capetown.gov.zo/thinkwater

[^6]: - The eastern (concrete lined) current channel of the Liesbeek River (Liesbeek canal):

[^7]: The Freshwater Consulting Group Vage 4

[^8]: 2.4. Wetland identification and delineation

[^9]: and associated streams) is within ready flight distance for most waterbirds that use the
 northern Liesbeek-Black-Diep river wetlands;

[^10]: na

[^11]: a. On the $M 5$ side of the channel (right hand bank):

 The extent of the fill platform must be pulled back, 50 that an area of at least 5 m from the top of the bank, as well as the river bank itself, is left open, before the pier;
 ii. If required, reno mattresses may be used to stabilise the river bank and top of bank under the bridge itself, where vegetation might not establish readily.
 Such reno would need to be laid at a slope no greater than 1:4 and could if necessary be edged at the bottom by gabion mattresses provided that no step
 greater than 300 mm vertical height was created; greater than 300 mm vertical height was created;
 iii. The river bank and open vegetated zone must be shaped (graded at 1:4 or flatter) and planted with appropriate indigenous vegetation along a bank
 length of at least 10 m up-and downstream of the bridge, and extending to at length of at least 10 m up-and downstream of the bridge, and extending to at
 least 5 m over the top of the bank; least 5 m over the top of the bank;
 b. On the River club side of the channel (left hand bank):
 !!

[^12]: ${ }^{2}$ Note that the hydrological study forused onfy on Alter native 1 and did not model changes associated with Altemative 2

[^13]: Table 3. Extent of natural and alien (tree) vegetation at the South African Astronomical | Observatory |
 | :--- |
 | Description |
 | Allen trees |

 Natural vegetation
 Natural vegetation
 Open renosteveld
 Renosterveld thicket
 Char welland
 Loam wetland

 | $\begin{array}{l}\text { Open renosterveld } \\ \text { Renosterveld thicket } \\ \text { Clare welland } \\ \text { Loam wetland }\end{array}$ |
 | :--- | \qquad

 Total
 grasses are locally prominent, particularly along the western boundary. Together with annuals and
 bulbs, grasses form a key component of renosterveld (Low \& Rebelo, 1996).
 The floristic differences when compared with Signal hill suggest, perhaps, a different vegetation type on the SAAO site (why not Cape Flats Shale Renosterveld?!).

 Images of the flora and vegetation of the SAAO site are shown in Plates 1 to 16.

[^14]: PROPOSED REDEVELOPMENT OF THE RIVER CLUB, OBSERVATORY: Baseline assessment of mammals, reptiles and amphibians at the confluence of the Liesbeek and Black rivers, with specific focus on the local Western Leopard Toad population

 Report compiled for: The Freshwater Consulting Group (subcontracted to SRK Consulting
 Client: Liesbeek Leisure Properties Trust
 Report compiled by: Marius Burger, trading as Sungazer Faunal Surveys, 6 Putter Street, Lakeside
 7945
 Phone: 083231 7452; Email: Sungazerfiniafrica.com
 FINAL -December 2017
 FINAL - December 2017

[^15]: 5.6 Connectivity between WLT populations

 In the light of the proposed redevelopment plans for the River Club, an issue that was specifically highlighted is that the Observatory WLT population appears to be separated from other CoCT WLT populations. If indeed so, then it would fikely be more susceptible to the associated negative development impacts as opposed to being more resilient if it was still functionally connected with other adjacent WLT populations. This issue was included in the faunal ToR, and is addressed here. The WLT is restricted to the south-western Cape region, ranging from the Cape Peninsula eastward to the western-most part of Agulhas National Park. Its total extent of occurrence (EOO) is $3824 \mathrm{~km}^{2}$, with an
 area of occupancy (AOO) of $405 \mathrm{~km}^{2}$ which is continually bein area of occupancy (AOO) of $405 \mathrm{~km}^{2}$ which is continually being reduced by ongoing development and
 habitat loss within the COCT and Overstrand regions (IUCN 2017). The species breeds at low elevations

[^16]: 4. Conclusion

 The water level and EC data indicate that the water in the Raaponburg Wettands is mainly
 groundwater, and that flow from the rivers towards the Wetlands is minor. groundwale, and han firl In the past, the River Club was part of the Raapenburg Wellands. The building of the Liesbeek
 diversion channel changed the hydrology and has created two separate systerns. This diversion channel changed the hydrology and has created two separate systems. This Club side, and the Wetland is geohydrologically up gradient of the River Club Site. This
 demonstates that extensive development at the River Club site will not affect groundwater flow

[^17]: Eased on thase international experiences I have provided information, advice, and development ideas for
 Estate; Drakensteln and Eden municipality landfll extensions;Safari-land near Franschoek;Vredenberg Golf course; eco-estate residential proposals east and west of the Ullenkraal River; and within Cape rown consulted on the effect of proposed roas developments at Wadrif Pan, and to iopment. I have also been for the Rocher Pan nature reserve.

[^18]: This study was commissioned by Llesbeek Leisure Properties Trust (LLPT) to investigate the impact that their proposed development might have on flooding in the vicinity, downstream and upstream of their property. The City of Cape Town and other affected parties made a number of requests for the information at the time. The findings of this report should only be used to assess the impact of the River Club Proposal, and cannot / should not be used when considering alterative proposals (egg. TRUP,
 NRF, PRASA etc.).

[^19]:

[^20]:

[^21]: 6.31 Buildings -on the -South Africen-Astronomical-Observatory shell be flood proofed where necossen and in consultation with the landowner and shall be to the approval of the delegated authority (Development Management) in consultation with the Directer: Catchment Stomwater and River Management.
 6.31 .1 Unless determinedethenvise by the delegated authority (Development Management, the flood proofing mentioned inn 6.31 above shall be implemented prior to the issuing of the first occupancy certified for the development proposed and shall be to the owner/developerf-account.

[^22]: D. Georgeades

 Environment Management Department 23 January 2020

